DOI QR코드

DOI QR Code

Metagenomic investigation of gastrointestinal microbiome in cattle

  • Kim, Minseok (Animal Nutrition and Physiology Team, National Institute of Animal Science) ;
  • Park, Tansol (Department of Animal Sciences, The Ohio State University) ;
  • Yu, Zhongtang (Department of Animal Sciences, The Ohio State University)
  • Received : 2017.07.22
  • Accepted : 2017.08.22
  • Published : 2017.11.01

Abstract

The gastrointestinal (GI) tract, including the rumen and the other intestinal segments of cattle, harbors a diverse, complex, and dynamic microbiome that drives feed digestion and fermentation in cattle, determining feed efficiency and output of pollutants. This microbiome also plays an important role in affecting host health. Research has been conducted for more than a century to understand the microbiome and its relationship to feed efficiency and host health. The traditional cultivation-based research elucidated some of the major metabolism, but studies using molecular biology techniques conducted from late 1980's to the late early 2000's greatly expanded our view of the diversity of the rumen and intestinal microbiome of cattle. Recently, metagenomics has been the primary technology to characterize the GI microbiome and its relationship with host nutrition and health. This review addresses the main methods/techniques in current use, the knowledge gained, and some of the challenges that remain. Most of the primers used in quantitative real-time polymerase chain reaction quantification and diversity analysis using metagenomics of ruminal bacteria, archaea, fungi, and protozoa were also compiled.

Keywords

References

  1. Deng W, Xi D, Mao H, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 2008;35:265-74. https://doi.org/10.1007/s11033-007-9079-1
  2. Kobayashi Y, Onodera R. Application of molecular biology to rumen microbes - review. Asian-Australas J Anim Sci 1999;12:77-83. https://doi.org/10.5713/ajas.1999.77
  3. White BA, Cann IKO, Kocherginskaya SA, et al. Molecular analysis of Archaea, Bacteria and Eucarya communities in the rumen - review. Asian-Australas J Anim Sci 1999;12:129-38. https://doi.org/10.5713/ajas.1999.129
  4. McSweeney CS, Mackie RI, Odenyo AA, Stahl DA. Development of an oligonucleotide probe targeting 16S rRNA and its application for detection and quantitation of the ruminal bacterium Synergistes jonesii in a mixed-population chemostat. Appl Environ Microbiol 1993;59:1607-12.
  5. Yanagita K, Kamagata Y, Kawaharasaki M, et al. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 2000;64:1737-42. https://doi.org/10.1271/bbb.64.1737
  6. Larue R, Yu Z, Parisi VA, Egan AR, Morrison M. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 2005;7:530-43. https://doi.org/10.1111/j.1462-2920.2005.00721.x
  7. Wei G, Lu H, Zhou Z, et al. The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCRTGGE profiling and clone library analysis. Microb Ecol 2007;54:194-202. https://doi.org/10.1007/s00248-007-9225-2
  8. Welkie DG, Stevenson DM, Weimer PJ. ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 2010;16:94-100. https://doi.org/10.1016/j.anaerobe.2009.07.002
  9. Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004;70:4800-6. https://doi.org/10.1128/AEM.70.8.4800-4806.2004
  10. Rattray RM, Craig AM. Molecular characterization of sheep ruminal enrichments that detoxify pyrrolizidine alkaloids by denaturing gradient gel electrophoresis and cloning. Microb Ecol 2007;54:264-75. https://doi.org/10.1007/s00248-006-9198-6
  11. Tajima K, Aminov RI, Nagamine T, et al. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 1999;29:159-69. https://doi.org/10.1111/j.1574-6941.1999.tb00607.x
  12. Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 2011;76:49-63. https://doi.org/10.1111/j.1574-6941.2010.01029.x
  13. Brulc JM, Antonopoulos DA, Miller ME, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 2009;106:1948-53. https://doi.org/10.1073/pnas.0806191105
  14. Callaway TR, Dowd SE, Edrington TS, et al. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 2010;88:3977-83. https://doi.org/10.2527/jas.2010-2900
  15. Paz HA, Anderson CL, Muller MJ, Kononoff PJ, Fernando SC. Rumen bacterial community composition in Holstein and Jersey cows is different under same dietary condition and is not affected by sampling method. Front Microbiol 2016;7:1206.
  16. Wells JE, Shackelford SD, Berry ED, et al. Prevalence and level of Escherichia coli O157:H7 in feces and on hides of feedlot steers fed diets with or without wet distillers grains with solubles. J Food Prot 2009;72:1624-33. https://doi.org/10.4315/0362-028X-72.8.1624
  17. Myer PR, Wells JE, Smith TP, Kuehn LA, Freetly HC. Cecum microbial communities from steers differing in feed efficiency. J Anim Sci 2015;93:5327-40. https://doi.org/10.2527/jas.2015-9415
  18. Myer PR, Wells JE, Smith TP, Kuehn LA, Freetly HC. Microbial community profiles of the jejunum from steers differing in feed efficiency. J Anim Sci 2016;94:327-38.
  19. Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004;36:808-12. https://doi.org/10.2144/04365ST04
  20. Kim M, Eastridge ML, Yu Z. Investigation of ruminal bacterial diversity in dairy cattle fed supplementary monensin alone and in combination with fat, using pyrosequencing analysis. Can J Microbiol 2014;60:65-71. https://doi.org/10.1139/cjm-2013-0746
  21. Kim M, Felix TL, Loerch SC, Yu Z. Effect of haylage and monensin supplementation on ruminal bacterial communities of feedlot cattle. Curr Microbiol 2014;69:169-75. https://doi.org/10.1007/s00284-014-0564-1
  22. Kim M, Kim J, Kuehn LA, et al. Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 2014;92:683-94. https://doi.org/10.2527/jas.2013-6841
  23. Myer PR, Smith TP, Wells JE, Kuehn LA, Freetly HC. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 2015;10:e0129174. https://doi.org/10.1371/journal.pone.0129174
  24. Myer PR, Wells JE, Smith TP, Kuehn LA, Freetly HC. Microbial community profiles of the colon from steers differing in feed efficiency. SpringerPlus 2015;4:454. https://doi.org/10.1186/s40064-015-1201-6
  25. Woese CR, Gutell R, Gupta R, Noller HF. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 1983;47:621-69.
  26. Yu Z, Garcia-Gonzalez R, Schanbacher FL, Morrison M. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2008;74:889-93. https://doi.org/10.1128/AEM.00684-07
  27. Lueders T, Chin KJ, Conrad R, Friedrich M. Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 2001;3:194-204. https://doi.org/10.1046/j.1462-2920.2001.00179.x
  28. Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002;148:3521-30. https://doi.org/10.1099/00221287-148-11-3521
  29. Daquiado AR, Cho KM, Kim TY, et al. Methanogenic archaea diversity in Hanwoo (Bos taurus coreanae) rumen fluid, rectal dung, and barn floor manure using a culture-independent method based on mcrA gene sequences. Anaerobe 2014;27:77-81. https://doi.org/10.1016/j.anaerobe.2014.01.008
  30. Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 2007;62:313-22. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  31. Lwin KO, Matsui H, Ban-Tokuda T, et al. Comparative analysis of methanogen diversity in the rumen of crossbred buffalo and cattle in the Philippines by using the functional gene mcrA. Mol Biol Rep 2012;39:10769-74. https://doi.org/10.1007/s11033-012-1969-1
  32. Ozutsumi Y, Tajima K, Takenaka A, Itabashi H. McrA gene and 16S rRNA gene in the phylogenetic analysis of methanogens in the rumen of faunated and unfaunated cattle. Anim Sci J 2012;83:727-34. https://doi.org/10.1111/j.1740-0929.2012.01023.x
  33. Ozutsumi Y, Tajima K, Takenaka A, Itabashi H. The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Biosci Biotechnol Biochem 2005;69:499-506. https://doi.org/10.1271/bbb.69.499
  34. Tajima K, Arai S, Ogata K, et al. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 2000;6:273-84. https://doi.org/10.1006/anae.2000.0353
  35. Tajima K, Nonaka I, Higuchi K, et al. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007;13:57-64. https://doi.org/10.1016/j.anaerobe.2006.12.001
  36. Zhou M, Hernandez-Sanabria E, Guan LL. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 2009;75:6524-33. https://doi.org/10.1128/AEM.02815-08
  37. Lukas F, Simunek J, Mrazek J, Kopecny J. PCR-DGGE analysis of bacterial population attached to the bovine rumen wall. Folia Microbiol 2010;55:345-8. https://doi.org/10.1007/s12223-010-0055-0
  38. Cho SJ, Cho KM, Shin EC, et al. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J Microbiol Biotechnol 2006;16:92-101.
  39. Kim M, Morrison M, Yu Z. Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments. Folia Microbiol 2011;56:453-8. https://doi.org/10.1007/s12223-011-0066-5
  40. Bekele AZ, Koike S, Kobayashi Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett 2010;305:49-57. https://doi.org/10.1111/j.1574-6968.2010.01911.x
  41. Bekele AZ, Koike S, Kobayashi Y. Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. FEMS Microbiol Lett 2011;316:51-60. https://doi.org/10.1111/j.1574-6968.2010.02191.x
  42. Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 2017;8:13. https://doi.org/10.1186/s40104-017-0145-9
  43. Kim M, Wells JE. A meta-analysis of bacterial diversity in the feces of cattle. Curr Microbiol 2016;72:145-51. https://doi.org/10.1007/s00284-015-0931-6
  44. McSweeney CS, Denman SE, Wright ADG, Yu Z. Application of recent DNA/RNA-based techniques in rumen ecology. Asian-Australas J Anim Sci 2007;20:283-94.
  45. Kim M, Yu Z. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets. J Anim Sci Biotechnol 2012;3:28. https://doi.org/10.1186/2049-1891-3-28
  46. Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 2007;75:165-74. https://doi.org/10.1007/s00253-006-0802-y
  47. Weimer PJ, Stevenson DM, Mertens DR, Thomas EE. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Appl Microbiol Biotechnol 2008;80:135-45. https://doi.org/10.1007/s00253-008-1528-9
  48. Tajima K, Aminov RI, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 2001;67:2766-74. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  49. Khafipour E, Li S, Plaizier JC, Krause DO. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol 2009;75:7115-24. https://doi.org/10.1128/AEM.00739-09
  50. Klieve AV, Hennessy D, Ouwerkerk D, et al. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol 2003;95:621-30. https://doi.org/10.1046/j.1365-2672.2003.02024.x
  51. Stiverson J, Morrison M, Yu Z. Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int J Microbiol 2011;2011:750613.
  52. Poulsen M, Schwab C, Jensen BB, et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 2013;4:1428. https://doi.org/10.1038/ncomms2432
  53. Sylvester JT, Karnati SK, Yu Z, Morrison M, Firkins JL. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr 2004;134:3378-84. https://doi.org/10.1093/jn/134.12.3378
  54. Abrar A, Watanabe H, Kitamura T, et al. Diversity and fluctuation in ciliate protozoan population in the rumen of cattle. Anim Sci J 2016;87:1188-92. https://doi.org/10.1111/asj.12591
  55. Hook SE, Steele MA, Northwood KS, Wright AD, McBride BW. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microb Ecol 2011;62:94-105. https://doi.org/10.1007/s00248-011-9881-0
  56. Kittelmann S, Janssen PH. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol Ecol 2011;75:468-81. https://doi.org/10.1111/j.1574-6941.2010.01022.x
  57. Skillman LC, Toovey AF, Williams AJ, Wright AD. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl Environ Microbiol 2006;72:200-6. https://doi.org/10.1128/AEM.72.1.200-206.2006
  58. Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 1975;91:249-62. https://doi.org/10.1099/00221287-91-2-249
  59. Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 2006;58:572-82. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  60. Bowman BH, Taylor JW, Brownlee AG, et al. Molecular evolution of the fungi: relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Mol Biol Evol 1992;9:285-96.
  61. Edwards JE, Kingston-Smith AH, Jimenez HR, et al. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol Ecol 2008;66:537-45. https://doi.org/10.1111/j.1574-6941.2008.00563.x
  62. Mao S, Zhang M, Liu J, Zhu W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep 2015;5:16116. https://doi.org/10.1038/srep16116
  63. de Oliveira MN, Jewell KA, Freitas FS, et al. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet Microbiol 2013;164:307-14. https://doi.org/10.1016/j.vetmic.2013.02.013
  64. Zhou M, Chen Y, Griebel PJ, Guan le L. Methanogen prevalence throughout the gastrointestinal tract of pre-weaned dairy calves. Gut Microbes 2014;5:628-38. https://doi.org/10.4161/19490976.2014.969649
  65. Frey JC, Pell AN, Berthiaume R, et al. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J Appl Microbiol 2010;108:1982-93.
  66. Kang S, Denman SE, Morrison M, et al. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis 2010;16:2034-42. https://doi.org/10.1002/ibd.21319
  67. Palmer C, Bik EM, Eisen MB, et al. Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 2006;34:e5. https://doi.org/10.1093/nar/gnj007
  68. Kim M, Wang L, Morrison M, Yu Z. Development of a phylogenetic microarray for comprehensive analysis of ruminal bacterial communities. J Appl Microbiol 2014;117:949-60. https://doi.org/10.1111/jam.12598
  69. Patra AK, Yu Z. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis. Front Microbiol 2015;6:297.
  70. Suzuki S, Ono N, Furusawa C, Kashiwagi A, Yomo T. Experimental optimization of probe length to increase the sequence specificity of high-density oligonucleotide microarrays. BMC Genomics 2007;8:373. https://doi.org/10.1186/1471-2164-8-373
  71. Rimour S, Hill D, Militon C, Peyret P. GoArrays: highly dynamic and efficient microarray probe design. Bioinformatics 2005;21:1094-103. https://doi.org/10.1093/bioinformatics/bti112
  72. Pitta DW, Pinchak E, Dowd SE, et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 2010;59:511-22. https://doi.org/10.1007/s00248-009-9609-6
  73. Cersosimo LM, Bainbridge ML, Kraft J, Wright AD. Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows. BMC Microbiol 2016;16:78. https://doi.org/10.1186/s12866-016-0694-7
  74. Fouts DE, Szpakowski S, Purushe J, et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One 2012;7:e48289. https://doi.org/10.1371/journal.pone.0048289
  75. Henderson G, Cox F, Ganesh S, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015;5:14567. https://doi.org/10.1038/srep14567
  76. Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011;108 Suppl 1:4516-22. https://doi.org/10.1073/pnas.1000080107
  77. Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J. Analysis, optimization and verification of illumina-generated 16S rRNA gene amplicon surveys. PLoS ONE 2014;9:e94249. https://doi.org/10.1371/journal.pone.0094249
  78. Myer PR, Kim M, Freetly HC, Smith TP. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers. J Microbiol Methods 2016;127:132-40. https://doi.org/10.1016/j.mimet.2016.06.004
  79. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
  80. Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-41. https://doi.org/10.1128/AEM.01541-09
  81. Haas BJ, Gevers D, Earl AM, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 2011;21:494-504. https://doi.org/10.1101/gr.112730.110
  82. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194-200. https://doi.org/10.1093/bioinformatics/btr381
  83. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460-1. https://doi.org/10.1093/bioinformatics/btq461
  84. McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012;6:610-8. https://doi.org/10.1038/ismej.2011.139
  85. Werner JJ, Koren O, Hugenholtz P, et al. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 2012;6:94-103. https://doi.org/10.1038/ismej.2011.82
  86. Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35:7188-96. https://doi.org/10.1093/nar/gkm864
  87. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590-6.
  88. Yilmaz P, Parfrey LW, Yarza P, et al. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res 2014;42:D643-8. https://doi.org/10.1093/nar/gkt1209
  89. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5261-7. https://doi.org/10.1128/AEM.00062-07
  90. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J 2011;5:169-72. https://doi.org/10.1038/ismej.2010.133
  91. Ter Braak CJF. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 1986;67:1167-79. https://doi.org/10.2307/1938672
  92. Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 1993;18:117-43. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  93. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol 2001;26:32-46.
  94. Weimer PJ. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 2015;6:296.
  95. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480-4. https://doi.org/10.1038/nature07540
  96. Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31:814-21. https://doi.org/10.1038/nbt.2676
  97. Liu J, Zhang M, Xue C, Zhu W, Mao S. Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. J Dairy Sci 2016;99:9668-81. https://doi.org/10.3168/jds.2016-11398
  98. Firkins JL, Yu Z. Ruminant Nutrition Symposium: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition. J Anim Sci 2015;93:1450-70. https://doi.org/10.2527/jas.2014-8754
  99. Poretsky R, Rodriguez RL, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 2014;9:e93827. https://doi.org/10.1371/journal.pone.0093827
  100. von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCRbased rRNA analysis. FEMS Microbiol Rev 1997;21:213-29. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  101. Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell 2016;166:1103-16. https://doi.org/10.1016/j.cell.2016.08.007
  102. Ross EM, Moate PJ, Marett L, Cocks BG, Hayes BJ. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing. J Dairy Sci 2013;96:6030-46. https://doi.org/10.3168/jds.2013-6766
  103. Patel V, Patel AK, Parmar NR, et al. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl Microbiol Biotechnol 2014;98:9749-61. https://doi.org/10.1007/s00253-014-6153-1
  104. Pitta DW, Pinchak WE, Indugu N, et al. Metagenomic analysis of the rumen microbiome of steers with wheat-induced frothy bloat. Front Microbiol 2016;7:689.
  105. Zhang J, Xu C, Huo D, Hu Q, Peng Q. Comparative study of the gut microbiome potentially related to milk protein in Murrah buffaloes (Bubalus bubalis) and Chinese Holstein cattle. Sci Rep 2017;7:42189. https://doi.org/10.1038/srep42189
  106. Dai X, Tian Y, Li J, et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol 2015;81:1375-86. https://doi.org/10.1128/AEM.03682-14
  107. Shinkai T, Mitsumori M, Sofyan A, et al. Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen. Anim Sci J 2016;87:1363-70. https://doi.org/10.1111/asj.12585
  108. Ka JO, Yu Z, Mohn WW. Monitoring the size and metabolic activity of the bacterial community during biostimulation of fuel-contaminated soil using competitive PCR and RT-PCR. Microb Ecol 2001;42:267-73. https://doi.org/10.1007/s00248-001-0003-2
  109. Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 2014;9:e85423. https://doi.org/10.1371/journal.pone.0085423
  110. Walter J, Tannock G, Tilsala-Timisjarvi A, et al. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 2000;66:297-303. https://doi.org/10.1128/AEM.66.1.297-303.2000
  111. Maeda H, Fujimoto C, Haruki Y, et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol 2003;39:81-6. https://doi.org/10.1016/S0928-8244(03)00224-4
  112. Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005;89:670-9. https://doi.org/10.1002/bit.20347
  113. Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993;59:695-700.
  114. Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 2005;71:4117-20. https://doi.org/10.1128/AEM.71.7.4117-4120.2005
  115. Lee DH, Zo YG, Kim SJ. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strandconformation polymorphism. Appl Environ Microbiol 1996;62:3112-20.
  116. Guo X, Xia X, Tang R, et al. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 2008;47:367-73. https://doi.org/10.1111/j.1472-765X.2008.02408.x
  117. Schwieger F, Tebbe CC. A new approach to utilize PCR-single-strandconformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 1998;64:4870-6.
  118. Muhling M, Woolven-Allen J, Murrell JC, Joint I. Improved groupspecific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2008;2:379-92. https://doi.org/10.1038/ismej.2007.97
  119. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010;5:e9085. https://doi.org/10.1371/journal.pone.0009085
  120. Matsuki T, Watanabe K, Fujimoto J, et al. Development of 16S rRNAgene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 2002;68:5445-51. https://doi.org/10.1128/AEM.68.11.5445-5451.2002
  121. Layton A, McKay L, Williams D, et al. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 2006;72:4214-24. https://doi.org/10.1128/AEM.01036-05
  122. Bartosch S, Fite A, Macfarlane GT, McMurdo ME. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004;70:3575-81. https://doi.org/10.1128/AEM.70.6.3575-3581.2004
  123. Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematic, New York, USA: John Wiley and Sons; 1991. p. 115-75.
  124. Ramirez-Farias C, Slezak K, Fuller Z, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009;101:541-50.
  125. Delroisse JM, Boulvin AL, Parmentier I, et al. Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol Res 2008;163:663-70. https://doi.org/10.1016/j.micres.2006.09.004
  126. Chaucheyras-Durand F, Ameilbonne A, Bichat A, et al. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J Appl Microbiol 2016;120:560-70. https://doi.org/10.1111/jam.13005
  127. Paillard D, McKain N, Chaudhary LC, et al. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek 2007;91:417-22. https://doi.org/10.1007/s10482-006-9121-7
  128. Li M, Penner GB, Hernandez-Sanabria E, Oba M, Guan LL. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 2009;107:1924-34. https://doi.org/10.1111/j.1365-2672.2009.04376.x
  129. Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 2001;204:361-6. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  130. Petri RM, Schwaiger T, Penner GB, et al. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol 2013;79:3744-55. https://doi.org/10.1128/AEM.03983-12
  131. Belanche A, Doreau M, Edwards JE, et al. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr 2012;142:1684-92. https://doi.org/10.3945/jn.112.159574
  132. Ouwerkerk D, Klieve AV, Forster RJ. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. J Appl Microbiol 2002;92:753-8. https://doi.org/10.1046/j.1365-2672.2002.01580.x
  133. Hernandez-Sanabria E, Goonewardene LA, Wang Z, et al. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol 2012;78:1203-14. https://doi.org/10.1128/AEM.05114-11
  134. Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 2004;97:1166-77. https://doi.org/10.1111/j.1365-2672.2004.02409.x
  135. Wetzels SU, Mann E, Metzler-Zebeli BU, et al. Epimural indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle. Front Microbiol 2016;7:274.
  136. Angel R, Matthies D, Conrad R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 2011;6:e20453. https://doi.org/10.1371/journal.pone.0020453
  137. Steinberg LM, Regan JM. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 2009;75:4435-42. https://doi.org/10.1128/AEM.02858-08
  138. Hook SE, Northwood KS, Wright AD, McBride BW. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 2009;75:374-80. https://doi.org/10.1128/AEM.01672-08
  139. Tymensen LD, Beauchemin KA, McAllister TA. Structures of freeliving and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology 2012;158:1808-17. https://doi.org/10.1099/mic.0.057984-0
  140. Mihajlovski A, Dore J, Levenez F, Alric M, Brugere JF. Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. Environ Microbiol Rep 2010;2:272-80. https://doi.org/10.1111/j.1758-2229.2009.00116.x
  141. Tymensen LD, McAllister TA. Community structure analysis of methanogens associated with rumen protozoa reveals bias in universal archaeal primers. Appl Environ Microbiol 2012;78:4051-6. https://doi.org/10.1128/AEM.07994-11
  142. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;89:5685-9. https://doi.org/10.1073/pnas.89.12.5685
  143. Whitford MF, Teather RM, Forster RJ. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 2001;1:5. https://doi.org/10.1186/1471-2180-1-5
  144. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 2013;79:5112-20. https://doi.org/10.1128/AEM.01043-13
  145. Mosher JJ, Bernberg EL, Shevchenko O, Kan J, Kaplan LA. Efficacy of a 3rd generation high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. J Microbiol Methods 2013;95:175-81. https://doi.org/10.1016/j.mimet.2013.08.009
  146. Cersosimo LM, Lachance H, St-Pierre B, van Hoven W, Wright AD. Examination of the rumen bacteria and methanogenic archaea of wild impalas (Aepyceros melampus melampus) from Pongola, South Africa. Microb Ecol 2015;69:577-85. https://doi.org/10.1007/s00248-014-0521-3
  147. Wright AD, Pimm C. Improved strategy for presumptive identification of methanogens using 16S riboprinting. J Microbiol Methods 2003;55:337-49. https://doi.org/10.1016/S0167-7012(03)00169-6
  148. Penton CR, Gupta VV, Tiedje JM, et al. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One 2014;9:e93893. https://doi.org/10.1371/journal.pone.0093893

Cited by

  1. Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0258-9
  2. 말 분변 내 마이크로바이옴 다양성 조사 vol.34, pp.3, 2019, https://doi.org/10.12750/jarb.34.3.157
  3. Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP) vol.12, pp.None, 2019, https://doi.org/10.1186/s13068-019-1436-5
  4. Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic Elements in Soils of Temperate Forests and Grasslands Varying in Land Use vol.11, pp.2, 2020, https://doi.org/10.3390/genes11020150
  5. Methanogenic Archaeal Census of Ruminal Microbiomes vol.21, pp.7, 2017, https://doi.org/10.5762/kais.2020.21.7.312
  6. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community vol.20, pp.1, 2017, https://doi.org/10.1186/s12866-020-01993-3
  7. Analysis of Rumen Fermentation and Methanogen Levels in Response to Various Alfalfa Hay, Oat Hay, and Feed Concentrate Ratios vol.40, pp.4, 2017, https://doi.org/10.5333/kgfs.2020.40.4.279
  8. Alterations in the Rumen Particle-Associated Microbiota of Goats in Response to Dietary Supplementation Levels of Schizochytrium spp. vol.13, pp.2, 2021, https://doi.org/10.3390/su13020607
  9. Evaluation of the microbiome composition in particulate matter inside and outside of pig houses vol.63, pp.3, 2017, https://doi.org/10.5187/jast.2021.e52
  10. The Effect of Forage-to-Concentrate Ratio on Schizochytrium spp.-Supplemented Goats: Modifying Rumen Microbiota vol.11, pp.9, 2017, https://doi.org/10.3390/ani11092746
  11. The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies vol.99, pp.10, 2021, https://doi.org/10.1093/jas/skab193