References
- Kan CA, Hartnell GF. Evaluation of broiler performance when fed roundupready wheat, control and commercial wheat varieties. Poult Sci 2004;83:1325-34. https://doi.org/10.1093/ps/83.8.1325
- Wang ZR, Qiao SY, Lu WQ, Li DF. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheatbased diet. Poult Sci 2005;84:875-81. https://doi.org/10.1093/ps/84.6.875
- Choct M, Hughes RJ, Wang J, et al. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br Poult Sci 1996;37:609-21. https://doi.org/10.1080/00071669608417891
- Nahas J, Lefrancois MR. Effects of feeding locally grown whole barley with or without enzyme addition and whole wheat on broiler performance and carcass traits. Poult Sci 2001;80:195-202. https://doi.org/10.1093/ps/80.2.195
- Jozefiak D, Rudkowski A, Martin SA. Carbohydrate fermentation in the avian ceca: a review. Anim Feed Sci Technol 2004;113:1-15. https://doi.org/10.1016/j.anifeedsci.2003.09.007
- Gracia MI, Latorre MA, Garcia M, Lazaro R, Mateos, GG. Heat processing of barley and enzyme supplementation of diets for broilers. Poult Sci 2003;87:1281-91.
- Lazaro R, Garcia M, Medel P, Mateos GG. Influence of enzymes on performance and digestive parameters of broilers fed rye-based diets. Poult Sci 2003;82:132-40. https://doi.org/10.1093/ps/82.1.132
- Lee KW, Choi YI, Moon EJ, et al. Evaluation of dietary multiple enzyme preparation (Natuzyme) in laying hens. Asian-Australas J Anim Sci 2014;27:1749-54. https://doi.org/10.5713/ajas.2014.14294
- Sharifi SD, Golestani G, Yaghobfar A, Khadem A, Pashazanussi H. Effects of supplementing a multienzyme to broiler diets containing a high level of wheat or canola meal on intestinal morphology and performance of chicks. J Appl Poult Res 2013;22:671-9. https://doi.org/10.3382/japr.2011-00452
- Aviagen, Ross 308: Broiler Nutrition Specification. Newbridge, Midlothian, UK: Ross Breeders Ltd; 2014.
- Sakamoto K, Hirose H, Onizuka A, et al. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J Surg Res 2000;94:99-106. https://doi.org/10.1006/jsre.2000.5937
- Yasar S, Forbes JM. Enzyme supplementation of dry and wet wheat-based feeds for broiler chickens: performance and gut responses. Br J Nutr 2000;84:297-307. https://doi.org/10.1017/S0007114500001574
- Pang, Y, Applegate TJ. Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poult Sci 2007;86:531-7. https://doi.org/10.1093/ps/86.3.531
- AOAC, Official Methods of Analysis. 17th ed. Association of Official Analytical Chemists, Arlington, VA: AOAC International; 2000.
- Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Englyst HN, Quigley ME, Geoffrey JH. Determination of dietary fibre as non-starch polysaccharides with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst 1994;119:1497-509. https://doi.org/10.1039/AN9941901497
- Williams CH, David DJ, Iisma O. The determination of chromic oxide in faeces samples by atomic absorption spectrometry. J Agric Sci 1962;59:381-5. https://doi.org/10.1017/S002185960001546X
- SAS (SAS Analysis System) Institute Inc. SAS User's Guide: Version 9.1. Cary, NC: SAS Institute Inc.; 2003.
- Langhout DJ, Schutte JB, De Jong J, et al. Effect of viscosity on digestion of nutrients in conventional and germ-free chicks. Br J Nutr 2000;83:533-40.
- Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol 2003;108:95-117. https://doi.org/10.1016/S0377-8401(03)00163-9
- Cook ME. Antibodies: alternatives to antibiotics in improving growth and feed efficiency. J Appl Poult Res 2004;13:106-19. https://doi.org/10.1093/japr/13.1.106
- Ikegami S, Tsuchihashi F, Harada H, et al. Effect of viscous indigestible polysaccharides on pancreatic biliary secretion and digestive organs in rats. J Nutr 1990;120:353-60. https://doi.org/10.1093/jn/120.4.353
- National Research Council, Nutrient requirements of poultry. 9th ed. Washington DC,: National Academy Press; 1994.
- Amerah, AM. Interactions between wheat characteristics and feed enzyme supplementation in broiler diets. Anim Feed Sci Technol 2015;199:1-9. https://doi.org/10.1016/j.anifeedsci.2014.09.012
- Moundras C, Behr SR, Remesy C, Demigne C. Fecal losses of sterols and bile acids induced by feeding rat's guar gum are due to greater pool size and liver bile acid secretion. J Nutr 1997;127:1068-76. https://doi.org/10.1093/jn/127.6.1068
- Taheri HR, Tanha N, Shahir MH. Effect of wheat bran inclusion in barley-based diet on villus morphology of jejunum, serum cholesterol, abdominal fat and growth performance of broiler chicken. J Livest Sci Technol 2016;4:9-16.
Cited by
- Enhancing Growth Performance, Organ Development, Meat Quality, and Bone Mineralisation of Broiler Chickens through Multi-Enzyme Super-Dosing in Reduced Energy Diets vol.11, pp.10, 2017, https://doi.org/10.3390/ani11102791