References
- Zeder MA, Hesse B. The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science 2000;287:2254-7. https://doi.org/10.1126/science.287.5461.2254
- Zhao W, Zhong T, Wang LJ, Li L, Zhang HP. Extensive female-mediated gene flow and low phylogeography among seventeen goat breeds in southwest China. Biochem Genet 2014;52:355-64. https://doi.org/10.1007/s10528-014-9652-y
- Du L. Animal genetic resources in china: sheep and goats. 62. Beijing, China: Agriculture Press; 2011.
- Graham AL, Cattadori IM, Lloyd-Smith JO, Ferrari MJ, Bjornstad ON. Transmission consequences of coinfection: cytokines writ large? Trends Parasitol 2007;23:284-91. https://doi.org/10.1016/j.pt.2007.04.005
- Xu N, Li X, Zhong Y. Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm 2015;Article ID 531518.
- Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 2011;7:e1002343-e. https://doi.org/10.1371/journal.pgen.1002343
- Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 2010;5:30-55. https://doi.org/10.1186/1479-7364-5-1-30
- Commins SP, Borish L, Steinke JW. Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol 2010;125:S53-S72. https://doi.org/10.1016/j.jaci.2009.07.008
- Li W, Liu Y, Mukhtar MM, et al. Activation of interleukin-32 proinflammatory pathway in response to influenza A virus infection. PLoS One 2008;3:e1985-e. https://doi.org/10.1371/journal.pone.0001985
- Zhou Y, Zhu Y. Important role of the IL-32 inflammatory network in the host response against viral infection. Viruses 2015;7:3116-29. https://doi.org/10.3390/v7062762
-
Kim S-H, Han S-Y, Azam T, Yoon D-Y, Dinarello CA. Interleukin-32: a cytokine and inducer of
$TNF{\alpha}$ . Immunity 2005;22:131-42. - Kim S. Interleukin-32 in inflammatory autoimmune diseases. Immune Netw 2014;14:123-7. https://doi.org/10.4110/in.2014.14.3.123
- Blows MW, Hoffmann AA. A reassessment of genetic limits to evolutionary change. Ecology 2005;86:1371-84. https://doi.org/10.1890/04-1209
- Agrawal AF, Stinchcombe JR. How much do genetic covariances alter the rate of adaptation? ProcR Soc London B Biol Sci 2009;276:1183-91. https://doi.org/10.1098/rspb.2008.1671
- Mukesh M, Sodhi M, Bhatia S, Mishra B. Genetic diversity of Indian native cattle breeds as analysed with 20 microsatellite loci. J Anim Breed Genet 2004;121:416-24. https://doi.org/10.1111/j.1439-0388.2004.00468.x
- Ellegren H, Moore S, Robinson N, et al. Microsatellite evolution--a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol 1997;14:854-60. https://doi.org/10.1093/oxfordjournals.molbev.a025826
-
Ijaz N, Liu G, Jiang X, et al. Genetic signature of strong recent positive selection at
$FSH{\beta}$ gene in goats. Pak J Agri Sci 2015;52:1113-8. - Barendse W, Harrison BE, Bunch RJ, Thomas MB, Turner LB. Genome wide signatures of positive selection: the comparison of independent samples and the identification of regions associated to traits. BMC Genomics 2009;10:1. https://doi.org/10.1186/1471-2164-10-1
- Stella A, Ajmone-Marsan P, Lazzari B, Boettcher P. Identification of selection signatures in cattle breeds selected for dairy production. Genetics 2010;185:1451-61. https://doi.org/10.1534/genetics.110.116111
- Beaumont MA, Nichols RA. Evaluating loci for use in the genetic analysis of population structure. Proc R Soc London B Biol Sci 1996; 263:1619-26. https://doi.org/10.1098/rspb.1996.0237
- Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogating a highdensity SNP map for signatures of natural selection. Genome Res 2002;12:1805-14. https://doi.org/10.1101/gr.631202
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
- Li K-B. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics 2003;19:1585-6. https://doi.org/10.1093/bioinformatics/btg192
- Pond SLK, Muse SV. HyPhy: hypothesis testing using phylogenies. Statistical methods in molecular evolution: Springer; 2005. p. 125-81.
- Brown E, Pilkington J, Nussey D, et al. Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Mol Ecol 2013;22:757-73. https://doi.org/10.1111/j.1365-294X.2012.05757.x
- Anisimova M, Nielsen R, Yang Z. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 2003;164:1229-36.
- Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 2010;11:17-30. https://doi.org/10.1038/nrg2698
- Neves F, Abrantes J, Steinke JW, Esteves PJ. Maximum-likelihood approaches reveal signatures of positive selection in IL genes in mammals. Innate immun 2014;20:184-91. https://doi.org/10.1177/1753425913486687
- Hayes BJ, Lien S, Nilsen H, et al. The origin of selection signatures on bovine chromosome 6. Anim Genet 2008;39:105-11. https://doi.org/10.1111/j.1365-2052.2007.01683.x
- Consortium BH. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 2009;324:528-32. https://doi.org/10.1126/science.1167936
- Ryu J, Lee C. Identification of contemporary selection signatures using composite log likelihood and their associations with marbling score in Korean cattle. Anim Genet 2014;45:765-70. https://doi.org/10.1111/age.12209
- Qanbari S, Pimentel E, Tetens J, et al. A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet 2010;41:377-89.
- Bustamante CD, Fledel-Alon A, Williamson S, et al. Natural selection on protein-coding genes in the human genome. Nature 2005;437:1153-7. https://doi.org/10.1038/nature04240
- Nielsen R, Bustamante C, Clark AG, et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 2005;3:e170. https://doi.org/10.1371/journal.pbio.0030170
- Thompson EE, Kuttab-Boulos H, Witonsky D, et al. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004; 75:1059-69. https://doi.org/10.1086/426406
- Fullerton SM, Bartoszewicz A, Ybazeta G, et al. Geographic and haplotype structure of candidate type 2 diabetes-susceptibility variants at the calpain-10 locus. Am J Hum Genet 2002;70:1096-106. https://doi.org/10.1086/339930
- Rockman MV, Hahn MW, Soranzo N, Goldstein DB, Wray GA. Positive selection on a human-specific transcription factor binding site regulating IL4 expression. Curr Biol 2003;13:2118-23. https://doi.org/10.1016/j.cub.2003.11.025
- Sakagami T, Witherspoon D, Nakajima T, et al. Local adaptation and population differentiation at the interleukin 13 and interleukin 4 loci. Genes Immun 2004;5:389-97. https://doi.org/10.1038/sj.gene.6364109
- Akey JM, Eberle MA, Rieder MJ, et al. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2004;2:1591-9.
- Rockman MV, Hahn MW, Soranzo N, et al. Positive selection on MMP3 regulation has shaped heart disease risk. Curr Biol 2004;14:1531-9. https://doi.org/10.1016/j.cub.2004.08.051
- Nakajima T, Wooding S, Sakagami T, et al. Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am J Hum Genet 2004;74:898-916. https://doi.org/10.1086/420793
Cited by
- Positive selection of IL-33 in adaptive immunity of domestic Chinese goats vol.7, pp.6, 2017, https://doi.org/10.1002/ece3.2813
- Association analysis of the ovine KAP6-1 gene and wool traits in Barki sheep vol.32, pp.6, 2021, https://doi.org/10.1080/10495398.2020.1749064