DOI QR코드

DOI QR Code

무용매 공정과 직접 패턴이 가능한 실세스퀴옥산 탑 게이트 유기 트랜지스터용 게이트 유전체

Solvent-Free Processable and Directly Photo-Patternable Silsesquioxane Gate Dielectrics for Top-Gate Organic Transistors

  • 권준선 (숭실대학교 유기신소재.파이버공학과) ;
  • 이소윤 (숭실대학교 정보통신소재융합학과) ;
  • 김도환 (숭실대학교 유기신소재.파이버공학과) ;
  • 곽영제 (숭실대학교 유기신소재.파이버공학과)
  • Kwon, Jun-Seon (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Lee, So Yoon (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University) ;
  • Kim, Do Hwan (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kwark, Young-Je (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2017.08.31
  • 심사 : 2017.10.15
  • 발행 : 2017.10.31

초록

Top-gate organic field-effect transistors (OFET) have a problem that, when the gate dielectric layer is formed by solution processes, the underlying organic semiconductor layer is damaged. To solve this problem, we have developed organic-inorganic hybrid gate dielectric materials that can be prepared by a solvent-free method. To apply the solvent-free process, the dielectric material must be in a liquid state and can be later converted to solid to provide sufficient dimensional stability. Thus, we synthesized a liquid-phase poly(mercaptopropyl-co-vinyl)silsesquioxane (PMPVSSQ) that could be cross-linked by UV irradiation. The synthesized polymer was spin-coated on a silicon wafer after mixing with a photoinitiator and then cured through the thiol-ene reaction by UV irradiation to form a highly crosslinked film. In addition, a negative tone pattern was successfully formed by the conventional photolithography process. The leakage current of the dielectric film was lower than that of the conventional polymer gate dielectric due to the highly crosslinked structure. A top-gate OFET was fabricated using poly(3-hexylthiophene), a p-type organic semiconductor, and the transfer characteristics of the fabricated device showed excellent stable operation as a typical transistor. This showed that the dielectric forming process did not affect the semiconductor layer because no solvent was used.

키워드

참고문헌

  1. I. Osaka, T. Abe, M. Shimawaki, T. Koganezawa, and K. Takimiya, "Naphthodithiophene-based Donor-acceptor Polymers: Versatile Semiconductors for OFETs and OPVs", ACS Macro Lett., 2012, 1, 437-440. https://doi.org/10.1021/mz300065t
  2. G. Leising, B. Stadlober, U. Haas, A. Haase, C. Palfinger, H. Gold, and G. Jakopic, "Nanoimprinted Devices for Integrated Organic Electronics", Microelectron. Eng., 2006, 83, 831-838. https://doi.org/10.1016/j.mee.2006.01.241
  3. N. Onojima, S. Takahashi, and T. Kato, "Pentacene-based Organic Field-effect Transistors with Poly(methyl methacrylate) Top-gate Insulators Fabricated by Electrostatic Spray Deposition", Synth. Met., 2013, 177, 72-76. https://doi.org/10.1016/j.synthmet.2013.06.008
  4. W. Deng, X. Zhang, J. Wang, Q. Shang, C. Gong, X. Zhang, Q. Zhang, and J. Jie, "Very Facile Fabrication of Aligned Organic Nanowires Based High-performance Top-gate Transistors on Flexible, Transparent Substrate", Org. Electron., 2014, 15, 1317-1323. https://doi.org/10.1016/j.orgel.2014.03.034
  5. L. M. Dumitru, K. Manoli, M. Magliulo, L. Sabbatini, G. Palazzo, and L. Torsi, "Plain Poly(acrylic acid) Gated Organic Field-effect Transistors on a Flexible Substrate", ACS Appl. Mater. Interfaces, 2013, 5, 10819-10823. https://doi.org/10.1021/am403008b
  6. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, "Paper-like Electronic Displays: Large-area Rubberstamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks", Proc. Natl. Acad. Sci, 2001, 98, 4835-4840. https://doi.org/10.1073/pnas.091588098
  7. G. H. Gelinck, H. E. A. Huitema, E. V. Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, W. Marsman, B. J. E. V. Rens, and D. M. D. Leeuw, "Flexible Active-matrix Displays and Shift Registers Based on Solution-processed Organic Transistors", Nat. Mater., 2004, 3, 106-110. https://doi.org/10.1038/nmat1061
  8. P. F Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, "Pentacene-based Radio-frequency Identification Circuitry", Appl. Phys. Lett., 2003, 82, 3964-3966. https://doi.org/10.1063/1.1579554
  9. W. Huang, J. Yu, X. Yu, and W. Shi, "Polymer Dielectric Layer Functionality in Organic Field-effect Transistor Based Ammonia Gas Sensor", Org. Electron., 2013, 14, 3453-3459. https://doi.org/10.1016/j.orgel.2013.09.018
  10. C. Zhang, P. Chen, and W. Hu, "Organic Field-effect Transistor-based Gas Sensors", Chem. Soc. Rev., 2015, 21, 2087-2107.
  11. P. Lin and F. Yan, "Organic Thin-film Transistors for Chemical and Biological Sensing", Adv. Mater., 2012, 24, 34-51. https://doi.org/10.1002/adma.201103334
  12. C. A. Di, F. Zhang, and D. Zhu, "Multi-functional Integration of Organic Field-effect Transistors (OFETs): Advances and Perspectives", Adv. Mater., 2013, 25, 313-330. https://doi.org/10.1002/adma.201201502
  13. D. B. Choi, T. K. An, Y. J. Kim, D. S. Chung, S. H. Kim, and C. E. Park, "Effects of Semiconductor/dielectric Interfacial Properties on the Electrical Performance of Top-gate Organic Transistors", Org. Electron., 2014, 15, 1299-1305. https://doi.org/10.1016/j.orgel.2014.02.026
  14. K. J. Baeg, D. Kim, S. W. Jung, J. B. Koo, I. K. You, Y. C. Nah, D. Y. Kim, and Y. Y. Noh, "Polymer Dielectrics and Orthogonal Solvent Effects for High-performance Inkjet-printed Topgated p-channel Polymer Field-effect Transistors", ETRI J., 2011, 33, 887-896. https://doi.org/10.4218/etrij.11.0111.0321
  15. Y. Y. Noh and H. Sirringhaus, "Ultra-thin Polymer Gate Dielectrics for Top-gate Polymer Field-effect Transistors", Org. Electron., 2009, 10, 174-180. https://doi.org/10.1016/j.orgel.2008.10.021
  16. K.-J. Baeg, A. Facchettic, and Y. Y. Noh, "Effects of Gate Dielectrics and Their Solvents on Characteristics of Solutionprocessed N-channel Polymer Field-effect Transistors", J. Mater. Chem., 2012, 22, 21138-21143. https://doi.org/10.1039/c2jm34218a
  17. M. Tapajna, M. Jurkovic, L. Valik, S. Hascik, D. Gregusova, F. Brunner, E.-M. Cho, and J. Kuzmik, "Bulk and Interface Trapping in the Gate Dielectric of GaN Based Metal-oxide Semiconductor High-electron-mobility Transistors", Appl. Phys. Lett., 2013, 102, 243509-243512. https://doi.org/10.1063/1.4811754
  18. G. Ye, H. Wang, S. Arulkumaran, G. I. Ng, R. Hofstetter, Y. Li, M. J. Anand, K. S. Ang, Y. K. T. Maung, and S. C. Foo, "Atomic Layer Deposition of $ZrO_2$ as Gate Dielectrics for AlGaN/GaN Metal-insulator-semiconductor High Electron Mobility Transistors on Silicon", Appl. Phys. Lett., 2013, 103, 1421091-1421093.
  19. H. Yan, T. Schuettfort, A. J. Kronemeijer, C. R. McNeill, and H. W. Ade, "Influence of Dielectric-dependent Interfacial Widths on Device Performance in Top-gate P(NDI2OD-T2) Fieldeffect Transistors", Appl. Phys. Lett., 2012, 101, 0933081-0933084.
  20. X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, "Air Stable Cross-linked Cytop Ultrathin Gate Dielectric for High Yield Low-voltage Top-gate Organic Field-effect Transistors", Chem. Mater., 2010, 22, 1559-1566. https://doi.org/10.1021/cm902929b
  21. D. K. Hwang, C. F. Hernandez, J. B. Kim, W. J. Potscavage, S. J. Kim, and B. Kippelen, "Top-gate Organic Field-effect Transistors with High Environmental and Operational Stability", Adv. Mater., 2011, 23, 1293-1298. https://doi.org/10.1002/adma.201004278
  22. J.-A. Cheng, C.-S. Chuang, M.-N. Chang, Y.-C. Tsai, and H.-P. D. Shieh, "Controllable Carrier Density of Pentacene Fieldeffect Transistors Using Polyacrylates as Gate Dielectrics", Org. Electron., 2008, 9, 1069-1075. https://doi.org/10.1016/j.orgel.2008.08.004
  23. Z. Qi, J. Cao, H. Li, L. Ding, and J. Wang, "Solution-processed Ultrathin Organic Semiconductor Film: Toward All-transparent Highly Stable Transistors", Adv. Electron. Mater., 2015, 1, 1500173-1500179. https://doi.org/10.1002/aelm.201500173