DOI QR코드

DOI QR Code

이온전도성 고분자막 활용 공정에서의 막 오염 현상 측정 기술

Measurement Technique of Membrane Fouling in Processes Utilizing Ion-Conducting Polymer Membranes

  • 한수진 (상명대학교 공과대학 그린화학공학과) ;
  • 박진수 (상명대학교 공과대학 그린화학공학과)
  • Han, Soo-Jin (Department of Green Chemical Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Green Chemical Engineering, College of Engineering, Sangmyung University)
  • 투고 : 2017.10.21
  • 심사 : 2017.10.27
  • 발행 : 2017.10.31

초록

본 연구에서는 역전기투석 공정에서 발생 가능한 막오염 현상을 in-situ로 측정하기 위하여 임피던스 스펙트로스코피 방법을 도입하여 실제 발생한 막오염 현상 측정 방법을 제시하였다. 얻어진 임피던스 데이터를 활용하여 Nyquist 도시법과 어드미턴스 도시법으로 스펙트럼을 도시하였으며 두 도시법 모두 유의미한 막오염 현상을 감지할 수 있었다. 또한 초기 막오염 현상에서 음이온 교환막 표면에 막오염물의 불안정한 축적 현상 및 역전기투석 공정의 운전 시간에 따른 막오염층의 구조적 변화를 감지할 수 있었다.

Electrical impedance spectroscopy is used to detect membrane fouling in-situ in reverse electrodialysis. The impedance data for the AMX membrane being fouled in the reverse electrodialysis are plotted and analyzed by Nyquist and admittance method. The meaningful graphical analyses for the fouling phenomena could be done by both Nyquist and admittance method. In addition, the unstable initial fouling stage was identified by the admittance data with high standard deviation, and the structural change of the fouling layer formed at the surface of anion-exchange membranes with the operation time of reverse electrodialysis was also detected.

키워드

참고문헌

  1. P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008). https://doi.org/10.1016/j.memsci.2008.03.037
  2. E. Brauns, "An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet and electrical energy", Desalination Water Treatment, 13, 53 (2010). https://doi.org/10.5004/dwt.2010.1090
  3. P. E. Dligolecki, "Mass transport in reverse electrodialysis for sustainable energy generation", Ph.D. Dissertation, Univ. of Twente, Enschede, Netherlands (2009).
  4. B. Logan and M. Elimelech, "Membrane-based processes for sustainable power generation using water", Nature, 488, 313 (2012). https://doi.org/10.1038/nature11477
  5. N. Y. Yip and M. Elimelech, "Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis", Environ. Sci. Tech., 48, 11002 (2014). https://doi.org/10.1021/es5029316
  6. J. W. Post, J. Veerman, H. Hamelers, G. Euverink, S. Metz, K. Nymeijer, and C. Buisman, "Salinitygradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", J. Membr. Sci., 288, 218 (2007). https://doi.org/10.1016/j.memsci.2006.11.018
  7. S.-Y. Lee, Y.-J. Jeong, S.-R. Chae, K.-H. Yeon, Y. Lee, C.-S. Kim, N.-J. Jeong, and J.-S. Park, "Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis", J. Phy. Chem. Solids, 91, 34 (2016). https://doi.org/10.1016/j.jpcs.2015.12.006
  8. E. Guler, "Anion exchange membrane in reverse electrodialysis", Ph.D. Dissertation, Univ. of Twente, Enschede, Netherlands (2014).
  9. H. K. Kim, S. Y. Lee, W. Y. Choi, N. J. Jeong, and C. S. Kim, "High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer", J. Mater. Chem. A, 3, 16302 (2015). https://doi.org/10.1039/C5TA03571F
  10. P. Dlugolecki, B. Anet, S. J. Metz, K. Nijmeijer, and M. Wessling, "Transport limitations in ion exchange membranes at low salt concentrations", J. Membr. Sci., 346, 163 (2010). https://doi.org/10.1016/j.memsci.2009.09.033
  11. P. Dlugolecki, P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling, "On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport", J. Membr. Sci., 349, 369 (2010). https://doi.org/10.1016/j.memsci.2009.11.069
  12. D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Doubled power density from salinity gradients at reduced intermembrane distance", Environ. Sci. Tech., 45, 7089 (2011). https://doi.org/10.1021/es2012758
  13. D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis", J. Membr. Sci., 453 312 (2014). https://doi.org/10.1016/j.memsci.2013.11.005
  14. D. A. Vermaas, J. Veerman, N. Y. Yip, and M. Elimelech, "High efficiency in energy generation from salinity gradients with reverse electrodialysis", ACS Sustain. Chem. Eng., 1, 1295 (2013). https://doi.org/10.1021/sc400150w
  15. S. Lee, M.-S. Shin, and J.-S. Park, "Anion-conducting pore-filling membranes with optimization of transport number and resistance for reverse electrodialysis", Chem. Lett., 43, 621 (2014). https://doi.org/10.1246/cl.131221
  16. J. P. Hwang, C. H. Lee, and Y. T. Jeong, "Research trends and prospects of reverse electrodialysis membranes", Membr. J., 27, 109 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.109
  17. D. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  18. O. Scialdone, C. Guarisco, S. Grispo, A. Angelo, and A. Galia, "Investigation of electrode material- Redox couple systems for reverse electrofialysis processes. Part I: Iron redox couples", J. Electroanal. Chem., 681, 66 (2012). https://doi.org/10.1016/j.jelechem.2012.05.017
  19. E. Guler, R. Elizen, D. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013). https://doi.org/10.1016/j.memsci.2013.06.045
  20. D. Vermaas, D. Kunteng, M. Saakes, and K. Nijmeijer, "Fouling in reverse electrodialysis under natural conditions", Water Res., 47, 1289 (2013). https://doi.org/10.1016/j.watres.2012.11.053
  21. http://www.astom-corp.jp/en/product/images/astom_hyo.pdf, October 29 (2017).
  22. Class materials at http://www.nonmet.mat.ethz.ch/education/courses/ceramic2, October 29 (2017).