DOI QR코드

DOI QR Code

온실의 구조설계용 작물하중 산정

Calculation of Crop Loads for Structural Design of Greenhouse

  • 나욱호 (경북대학교 농업토목공학과) ;
  • 이종원 (경북대학교 농업과학기술연구소) ;
  • 라쉬드아드난 (경북대학교 농업토목공학과) ;
  • 곽철순 (경북대학교 농업토목공학과) ;
  • 이시영 (농촌진흥청 국립농업과학원) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 이현우 (경북대학교 농업토목공학과)
  • Na, Wook-Ho (Dept. of Agricultural Eng., Kyungpook National Univ.) ;
  • Lee, Jong-Won (Institute Agricultural Science & Technology, Kyungpook National University) ;
  • Rasheed, Adnan (Dept. of Agricultural Eng., Kyungpook National Univ.) ;
  • Kwak, Cheul-Soon (Dept. of Agricultural Eng., Kyungpook National Univ.) ;
  • Lee, Si-Young (Dept. of Agricultural Engg., National Academy of Agricultural Science, RDA) ;
  • Yoon, Yong-Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ. (Institute of Agriculture and Life Science)) ;
  • Lee, Hyun-Woo (Dept. of Agricultural Eng., Kyungpook National Univ.)
  • 투고 : 2017.08.07
  • 심사 : 2017.09.20
  • 발행 : 2017.10.31

초록

본 연구에서는 온실의 구조설계용 작물하중을 산정하는데 필요한 기초자료를 제공하기 위하여 각국의 온실구조설계용 작물하중 기준들을 비교분석하고 여러 가지 온실작물들에 대하여 작물하중을 직접 측정하고 분석하였다. 설계 작물하중에 대한 각국의 기준들을 비교분석한 결과 나라들 마다 서로 많은 차이를 보여주고 있으며, 우리나라 기준들은 외국의 기준들을 그대로 인용하고 있는 것으로 나타나 우리나라 실정에 맞는 작물하중 기준이 제시될 필요가 있다고 판단된다. 최대 주당 작물하중이 토마토는 두 가지 온실에서 각각 $3.3kgf{\cdot}plant^{-1}$$3.9kgf{\cdot}plant^{-1}$로 나타났고, 오이는 $0.75kgf{\cdot}plant^{-1}$, 가지는 $1.9kgf{\cdot}plant^{-1}$, 딸기는 재배베드를 포함하여 $2.1kgf{\cdot}plant^{-1}$으로 나타났다. 단위면적당 작물하중은 토마토가 평균 $8.5kgf{\cdot}m^{-2}$으로 나타났고, 오이와 가지는 각각 $2.1kgf{\cdot}m^{-2}$$2.4kgf{\cdot}m^{-2}$으로 토마토의 하중보다 훨씬 낮게 나타났다. 우리나라 온실설계기준에 제시된 작물하중은 토마토와 오이의 경우 $15kgf{\cdot}m^{-2}$으로 본 연구에서 측정된 값보다 훨씬 높았다. 우리나라의 설계기준이 네덜란드의 기준을 그대로 인용한 것으로 판단되기 때문에 이러한 차이를 고려하여 우리나라의 작물하중 설계기준에 대한 재검토가 이루어져야 할 것으로 판단된다. 딸기의 작물하중은 행잉베드를 포함한 중량이 $21.0kgf{\cdot}m^{-2}$로 네덜란드의 설계기준인 $30kgf{\cdot}m^{-2}$보다 훨씬 작았다.

This study was conducted to provide basic data needed to calculate the crop loads for the greenhouse design. Four countries' crop loads for greenhouse structures were compared and the crop loads were measured directly and analyzed for various greenhouse crops, including tomato, strawberry, cucumber, and eggplant. According to the analysis results of four country's standards for the design crop loads, it was judged that the new design crop loads suit for greenhouse crops in our country should be suggested because our standards just used the design crop loads of other countries. The maximum crop loads per plant of tomato, cucumber, eggplant, and strawberry were 3.9, 0.75, 1.9 and $2.1kgf{\cdot}plant^{-1}$, respectively. The crop load per unit area of tomato was $8.5kgf{\cdot}m^{-2}$, which was much greater than the cucumber and eggplant's crop load of 2.1 and $2.4kgf{\cdot}m^{-2}$ respectively. The crop loads of tomato and cucumber, suggested by the greenhouse structure design standard of Korea, is $15kgf{\cdot}m^{-2}$, which is far greater than the values suggested by this research. It was judged that this was because our standard just used the Dutch standard, our crop load standard should be reviewed considering this difference. The crop load of strawberry, including the growing bed, was $21.0kgf{\cdot}m^{-2}$, which was much greater than the crop load in the Dutch standard.

키워드

참고문헌

  1. Architectural Institute of Japan (AIJ). 2004. Recommendations for loads on buildings.
  2. Architectural Institute of Korea (AIK). 2009. Korean Building Code and Commentary (in Korean).
  3. Choi, M.K., S.W. Yun, C. Yu, S.Y. Lee, and Y.C. Yoon. 2013. Investigation of the crop load for tomato and paprika in the greenhouse. Protected Horticulture and Plant Factory 22(3):234-240 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.3.234
  4. Choi, M.K., S.W. Yun, H.T. Kim, S.Y. Lee, and Y.C. Yoon. 2014. Current status on the greenhouse foundation. Journal of Agriculture & Life Science 48(3):251-260 (in Korean). https://doi.org/10.14397/jals.2014.48.3.251
  5. Japan Greenhouse Horticulture Association(JGHA), 1994. Greenhouse horticulture handbook. Japan Greenhouse Horticulture Association, Tokyo, Japan. p.243-248 (in Japanese).
  6. Japan Greenhouse Horticulture Association (JGHA), 1997. Standard for structural safety of greenhouse. Tokyo: Japan Greenhouse Horticulture Association (in Japanese).
  7. Jung, S.H., J.W. Lee, S.Y. Lee, and H.W. Lee. 2015. Analysis of wind velocity profile for calculation of wind pressure on greenhouse. Protected Horticulture and Plant Factory 24(3):135-146 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.3.135
  8. Kim, M.K., S.W. Nam, W.M. Suh, Y.C. Yoon, S.G. Lee, and H.W. Lee. 2000. Agricultural structure engineering. Hyangmunsa, Seoul, Korea (in Korean).
  9. Kim, R.U., D.W. Kim, K.C. Ryu, K.S. Kwon, and I.B. Lee. 2014. Estimation of wind pressure coefficients on even-span greenhouse built in reclaimed land according to roof slope using wind tunnel. Protected Horticulture and Plant Factory. 23(4):269-280 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.4.269
  10. Meteor Systems. 2017. Gutter growing system vegetable. http://www.irrigation.com.
  11. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 1999. Greenhouse structure design standards and explanations (in Korean).
  12. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF), Rural Development Administration(RDA). 2010. Designated notice of standards to endure disaster for horticultural and special facilities (in Korean).
  13. National Greenhouse Manufactures Association (NGMA). 2004. Structural Design Manual. NGMA, PA, USA.
  14. Netherlands Standardization Institute (NEN). 2004. Greenhouses: Design and construction - part1 : commercial production greenhouses.
  15. Rural Development Administration(RDA). 1994. Studies on the standardization of greenhouse structures and the protected cultivation of crops. RDA, Jeonju, Korea (in Korean).
  16. Rural Development Administration(RDA). 2016. Study on requirement for structural design of greenhouse in reclaimed land. Greenhouse structural requirements. RDA, Jeonju, Korea (in Korean).
  17. Rural Development Corporation(RDC). 1995. Greenhouse structural requirements. RDC, Uiwang, Korea (in Korean).
  18. Yu, I.H., E.H. Lee, M.W. Cho, H.R. Ryu, and Y.C. Kim. 2012. Development of multi-span plastic greenhouse for tomato cultivation. Journal of Bio-Environment Control 21(4):428-436 (in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.428