References
- Arellano-Valle, R. B. and Bolfarine, H. (1995). On some characterizations of the t-distribution, Statistics & Probability Letters, 25, 79-85. https://doi.org/10.1016/0167-7152(94)00208-P
- Azzalini, A. and Valle, A. D. (1996). The multivariate skew-normal distribution, Biometrika, 83, 715-726. https://doi.org/10.1093/biomet/83.4.715
- Chen, M. H., Dey, D. K., and Shao, Q. M. (1999). A new skewed link model for dichotomous quantal response data, Journal of the American Statistical Association, 94, 1172-1186. https://doi.org/10.1080/01621459.1999.10473872
- Davis, C. (2015). The Skewed Generalized T Distribution Tree Package Vignette, Available from: https://cran.r-project.org/web/packages/sgt/vignettes/sgt.pdf
- Hansen, C., McDonald, J. B., and Newey, W. K. (2010). Instrumental variables estimation with flexible distributions, Journal of Business & Economic Statistics, 28, 13-25. https://doi.org/10.1198/jbes.2009.06161
- Kim, S., Chen, M. H., and Dey, D. K. (2008). Flexible generalized t-link models for binary response data, Biometrika, 95, 93-106. https://doi.org/10.1093/biomet/asm079
- Koenker, R. (2006). Parametric links for binary response. The Newsletter of the R Project Volume 6/4, October 2006, 32.
- Liu, C. (2004). Robit regression: a simple robust alternative to logistic and probit regression. In Applied Bayesian Modeling and Casual Inference from Incomplete-Data Perspectives, 227-238.
- McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models no. 37 in Monograph on Statistics and Applied Probability.
- McDonald, J. B. and Newey, W. K. (1988). Partially adaptive estimation of regression models via the generalized t distribution, Econometric Theory, 4, 428-457. https://doi.org/10.1017/S0266466600013384
- O'hagan, A., and Leonard, T. (1976). Bayes estimation subject to uncertainty about parameter constraints, Biometrika, 63, 201-203. https://doi.org/10.1093/biomet/63.1.201
- Pregibon, D. (1982). Resistant fits for some commonly used logistic models with medical applications, Biometrics, 38, 485-498. https://doi.org/10.2307/2530463
- Stukel, T. A. (1988). Generalized logistic models, Journal of the American Statistical Association, 83, 426-431. https://doi.org/10.1080/01621459.1988.10478613
- Theodossiou, P. (1998). Financial data and the skewed generalized t distribution, Management Science, 44(12-part-1), 1650-1661. https://doi.org/10.1287/mnsc.44.12.1650
- UCI Machine Learning Repository http://archive.ics.uci.edu/ml/index.php
- Wood, S. N. (2006) Generalized Additive Models: An Introduction with R, CRC Press, Boca Ranton, FL.
- Yates, F. (1955). The use of transformations and maximum likelihood in the analysis of quantal experiments involving two treatments, Biometrika, 42, 382-403.