DOI QR코드

DOI QR Code

A generalized likelihood ratio chart for monitoring type I right-censored Weibull lifetimes

제1형 우측중도절단된 와이블 수명자료를 모니터링하는 GLR 관리도

  • Han, Sung Won (Department of Applied Statistics, Chung-Ang University) ;
  • Lee, Jaeheon (Department of Applied Statistics, Chung-Ang University)
  • 한성원 (중앙대학교 응용통계학과) ;
  • 이재헌 (중앙대학교 응용통계학과)
  • Received : 2017.07.17
  • Accepted : 2017.08.23
  • Published : 2017.10.31

Abstract

Weibull distribution is a popular distribution for modeling lifetimes because it reflects the characteristics of failure adequately and it models either increasing or decreasing failure rates simply. It is a standard method of the lifetimes test to wait until all samples failed; however, censoring can occur due to some realistic limitations. In this paper, we propose a generalized likelihood ratio (GLR) chart to monitor changes in the scale parameter for type I right-censored Weibull lifetime data. We also compare the performance of the proposed GLR chart with two CUSUM charts proposed earlier using average run length (ARL). Simulation results show that the Weibull GLR chart is effective to detect a wide range of shift sizes when the shape parameter and sample size are large and the censoring rate is not too high.

와이블 분포는 제품의 물리적 특성을 잘 반영하고 고장률이 증가하거나 감소하는 경우 모두를 나타낼 수 있기 때문에 재품의 수명을 모델링할 때 가장 많이 사용되는 분포이다. 일반적으로 수명시험에서 표본의 모든 제품의 수명이 측정될 때까지 시험을 진행하는 것이 원칙이지만 여러 가지 시간적 또는 비용적인 제약으로 인해 시험을 중도절단 하는 경우가 빈번하게 발생한다. 이 논문에서는 제품의 수명 데이터가 와이블 분포를 따르고 제1형 우측중도절단된 경우 척도모수의 변화를 탐지하는 Weibull generalized likelihood ratio (GLR) 관리도 절차를 제안하였다. 모의실험을 실시하여 제안한 GLR 관리도와 기존에 제안된 두 가지 CUSUM 관리도의 성능을 average run length (ARL)을 이용하여 비교하였다. 그 결과 이 논문에서 제안한 GLR 관리도는 형상모수와 표본의 크기가 크고 중도절단율이 아주 높지 않은 경우 척도모수의 다양한 변화를 탐지하는데 효율적임을 알 수 있었다.

Keywords

References

  1. Choi, M. J. and Lee, J. (2016). A binomial CUSUM chart for monitoring type I right-censored Weibull lifetimes, The Korean Journal of Applied Statistics, 29, 823-833. https://doi.org/10.5351/KJAS.2016.29.5.823
  2. Dickinson, R. M., Olteanu Roberts, D. A., Driscoll, A. R., Woodall, W. H., and Vining, G. G. (2014). CUSUM charts for monitoring the characteristic life of censoredWeibull lifetimes, Journal of Quality Technology, 46, 340-358. https://doi.org/10.1080/00224065.2014.11917976
  3. Kao, J. H. K. (1959). A graphical estimation of mixed Weibull parameters in life-testing of electron tubers, Technometrics, 1, 389-407. https://doi.org/10.1080/00401706.1959.10489870
  4. Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data (2nd ed.), John Wiley & Sons, Inc., Hoboken, NJ.
  5. Lieblein, J. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep-groove ball bearings, Journal of Research of the National Bureau of Standards, 57, 273-316. https://doi.org/10.6028/jres.057.033
  6. Olteanu, D. A. (2010). Cumulative Sum Control Charts for Censored Reliability Data, Ph.D. Dissertation, Virginia Tech.
  7. Reynolds, Jr., M. R. and Lou, J. (2010). An evaluation of a GLR control chart for monitoring the process mean, Journal of Quality Technology, 42, 287-310. https://doi.org/10.1080/00224065.2010.11917825
  8. Reynolds, Jr., M. R., Lou, J., Lee, J., and Wang, S. (2013). The design of GLR control charts for monitoring the process mean and variance, Journal of Quality Technology, 45, 34-60. https://doi.org/10.1080/00224065.2013.11917914
  9. Ryan, A. G., Wells, L. J., and Woodall, W. H. (2011). Methods for monitoring multiple proportions when inspecting continuously, Journal of Quality Technology, 43, 237-248. https://doi.org/10.1080/00224065.2011.11917860
  10. Steiner, S. H. and MacKay, R. J. (2001). Monitoring processes with data censored owing to competing risks by using exponentially weighted moving average control charts, Journal of the Royal Statistical Society, Series C: Applied Statistics, 50, 293-302. https://doi.org/10.1111/1467-9876.00234
  11. Zhang, L. and Chen, G. (2004). EWMA charts for monitoring the mean of censored Weibull lifetimes, Journal of Quality Technology, 36, 321-328. https://doi.org/10.1080/00224065.2004.11980277