참고문헌
- Demirbas, A., Kabli, M., Alamoudi, R. H., Ahmad, W., & Basahel, A. (2017). Renewable energy resource facilities in the Kingdom of Saudi Arabia: Prospects, social and political challenges. Energy Sources, Part B: Economics, Planning, and Policy, 12(1), 8-16. https://doi.org/10.1080/15567249.2014.996303
- Schlapbach, L., & Zuttel, A. (2001). Hydrogenstorage materials for mobile applications. Nature, 414(6861), 353-358. https://doi.org/10.1038/35104634
- Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International journal of hydrogen energy, 33(15), 4013-4029. https://doi.org/10.1016/j.ijhydene.2008.05.047
- Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International journal of hydrogen energy, 40(34), 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
- Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
- Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 100(2), 410-426. https://doi.org/10.1109/JPROC.2011.2156750
- Durst, J., Siebel, A., Simon, C., Hasche, F., Herranz, J., & Gasteiger, H. A. (2014). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 7(7), 2255-2260. https://doi.org/10.1039/C4EE00440J
- Chen, W. F., Sasaki, K., Ma, C., Frenkel, A. I., Marinkovic, N., Muckerman, J. T., ... & Adzic, R. R. (2012). Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angewandte Chemie International Edition, 51(25), 6131-6135. https://doi.org/10.1002/anie.201200699
- Morales-Guio, C. G., Stern, L. A., & Hu, X. (2014). Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18), 6555-6569. https://doi.org/10.1039/C3CS60468C
- Hu, W. (2000). Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis. International Journal of Hydrogen Energy, 25(2), 111-118. https://doi.org/10.1016/S0360-3199(99)00024-5
- Sheng, W., Myint, M., Chen, J. G., & Yan, Y. (2013). Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 6(5), 1509-1512. https://doi.org/10.1039/c3ee00045a
- Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., & Bao, X. (2014). Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy & Environmental Science, 7(6), 1919-1923. https://doi.org/10.1039/C4EE00370E
- Chen, L., & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. Journal of The Electrochemical Society, 138(11), 3321-3328. https://doi.org/10.1149/1.2085409
- Jaksic, J. M., Vojnovic, M. V., & Krstajic, N. V. (2000). Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes. Electrochimica Acta, 45(25), 4151-4158. https://doi.org/10.1016/S0013-4686(00)00549-1
- Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., ... & Dai, H. (2013). An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc, 135(23), 8452-8455. https://doi.org/10.1021/ja4027715
- Shervedani, R. K., & Lasia, A. (1997). Studies of the Hydrogen Evolution Reaction on Ni-P Electrodes. Journal of the Electrochemical Society, 144(2), 511-519. https://doi.org/10.1149/1.1837441
- Feng, L., Vrubel, H., Bensimon, M., & Hu, X. (2014). Easily-prepared dinickel phosphide (Ni 2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics, 16(13), 5917-5921. https://doi.org/10.1039/c4cp00482e
- Paseka, I. (1999). Influence of hydrogen absorption in amorphous Ni-P electrodes on double layer capacitance and charge transfer coefficient of hydrogen evolution reaction. Electrochimica acta, 44(25), 4551-4558. https://doi.org/10.1016/S0013-4686(99)00185-1
- Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M., & Liu, Y. (2010). Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS applied materials & interfaces, 2(10), 2915-2923. https://doi.org/10.1021/am100618h
- Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research Part A, 60(4), 613-621. https://doi.org/10.1002/jbm.10167
- Gorji, M., Jeddi, A., & Gharehaghaji, A. A. (2012). Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. Journal of Applied Polymer Science, 125(5), 4135-4141. https://doi.org/10.1002/app.36611
- Leung, W. W. F., & Hung, C. H. (2012). Skin effect in nanofiber filtration of submicron aerosols. Separation and purification technology, 92, 174-180. https://doi.org/10.1016/j.seppur.2011.02.020
- Guo, P., Zhao, G., Chen, P., Lei, B., Jiang, L., Zhang, H., ... & Liu, M. (2014). Porphyrin nanoassemblies via surfactant-assisted assembly and single nanofiber nanoelectronic sensors for high-performance H2O2 vapor sensing. ACS nano, 8(4), 3402-3411. https://doi.org/10.1021/nn406071f
- Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. https://doi.org/10.1088/0957-4484/17/14/R01
- Ra, E. J., Raymundo-Pinero, E., Lee, Y. H., & Beguin, F. (2009). High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 47(13), 2984-2992. https://doi.org/10.1016/j.carbon.2009.06.051
- Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances, 28(3), 325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004
- Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World Scientific.
- Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703. https://doi.org/10.1002/anie.200604646
- Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
- Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216. https://doi.org/10.1088/0957-4484/7/3/009
- Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
- Shin, S. H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H. W. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of tissue engineering, 3(1), 2041731412443530.
- Collins, G., Federici, J., Imura, Y., & Catalani, L. H. (2012). Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. Journal of Applied Physics, 111(4), 044701. https://doi.org/10.1063/1.3682464
- Schiffman, J. D., & Schauer, C. L. (2007). One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules, 8(9), 2665-2667. https://doi.org/10.1021/bm7006983
- Schiffman, J. D., & Schauer, C. L. (2008). A review: electrospinning of biopolymer nanofibers and their applications. Polymer reviews, 48(2), 317-352. https://doi.org/10.1080/15583720802022182
- Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review. Journal of Materials Processing Technology, 167(2), 283-293. https://doi.org/10.1016/j.jmatprotec.2005.06.053
- Aruna, S. T., Balaji, L. S., Kumar, S. S., & Prakash, B. S. (2017). Electrospinning in solid oxide fuel cells-A review. Renewable and Sustainable Energy Reviews, 67, 673-682. https://doi.org/10.1016/j.rser.2016.09.003
- Li, X., Chen, Y., Huang, H., Mai, Y. W., & Zhou, L. (2016). Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review. Energy Storage Materials, 5, 58-92. https://doi.org/10.1016/j.ensm.2016.06.002
- Haider, A., Haider, S., & Kang, I. K. (2015). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry.
- Panthi, G., Park, M., Kim, H. Y., & Park, S. J. (2015). Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. Journal of Industrial and Engineering Chemistry, 24, 1-13. https://doi.org/10.1016/j.jiec.2014.09.011
- Khoo, W., & Koh, C. T. (2015, October). A Review of Electrospinning Process and Microstructure Morphology Control. In International Conference on Mechanical and Manufacturing Engineering (ICME2015).
- Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., ... & Ndesendo, V. M. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013.
- Ray, S. S., Chen, S. S., Li, C. W., Nguyen, N. C., & Nguyen, H. T. (2016). A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 6(88), 85495-85514. https://doi.org/10.1039/C6RA14952A
- Tomaszewski, P. E. (2002). Golden book of phase transitions. Wroclaw, 1, 1-123.
- Buschow, K. H. J., Van Engen, P. G., & Jongebreur, R. (1983). Magneto-optical properties of metallic ferromagnetic materials. Journal of magnetism and magnetic materials, 38(1), 1-22. https://doi.org/10.1016/0304-8853(83)90097-5
- Saalfeld, H. (1964). Strukturuntersuchungen im System Al2O3-Cr2O3. Zeitschrift fur Kristallographie-Crystalline Materials, 120(1-6), 342-348. https://doi.org/10.1524/zkri.1964.120.4-5.342
- Kohlhaas, R., Dunner, P., & Schmitz, P. N. (1967). The temperature-dependance of the lattice parameters of iron, cobalt, and nickel in the high temperature range. Z Angew Physik, 23(4).
- Zhang, G., Zhang, Y. C., Nadagouda, M., Han, C., O'Shea, K., El-Sheikh, S. M., ... & Dionysiou, D. D. (2014). Visible light-sensitized S, N and C co-doped polymorphic TiO 2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental, 144, 614-621. https://doi.org/10.1016/j.apcatb.2013.07.058
- Campbell, J. (2003). Castings. Butterworth-Heinemann.
- Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534-534. https://doi.org/10.1038/nnano.2011.145
- Lee, S. H., Tekmen, C., & Sigmund, W. M. (2005). Three-point bending of electrospun TiO 2 nanofibers. Materials Science and Engineering: A, 398(1), 77-81. https://doi.org/10.1016/j.msea.2005.03.014
- Kang, W., Cheng, B., Li, Q., Zhuang, X., & Ren, Y. (2011). A new method for preparing alumina nanofibers by electrospinning technology. Textile Research Journal, 81(2), 148-155. https://doi.org/10.1177/0040517510377831
- Ruiz-Rosas, R., Bedia, J., Rosas, J. M., Lallave, M., Loscertales, I. G., Rodriguez-Mirasol, J., & Cordero, T. (2012). Methanol decomposition on electrospun zirconia nanofibers. Catalysis today, 187(1), 77-87. https://doi.org/10.1016/j.cattod.2011.10.031
- Li, D., Wang, Y., & Xia, Y. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano letters, 3(8), 1167-1171. https://doi.org/10.1021/nl0344256
- Rahim, M. A., Hameed, R. A., & Khalil, M. W. (2004). Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. Journal of power sources, 134(2), 160-169. https://doi.org/10.1016/j.jpowsour.2004.02.034
- Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., & Nejati, M. (2009). Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Bioelectrochemistry, 75(1), 1-8. https://doi.org/10.1016/j.bioelechem.2008.11.006
- Ardakani, M. M., Taleat, Z., Beitollahi, H., Salavati-Niasari, M., Mirjalili, B. B. F., & Taghavinia, N. (2008). Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO 2 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry, 624(1), 73-78. https://doi.org/10.1016/j.jelechem.2008.07.027
- Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J. B., & Browning, D. (2008). Power from marine sediment fuel cells: the influence of anode material. Journal of Applied Electrochemistry, 38(9), 1313. https://doi.org/10.1007/s10800-008-9561-z
- Schultz, T., & Sundmacher, K. (2005). Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation. Journal of power sources, 145(2), 435-462. https://doi.org/10.1016/j.jpowsour.2005.02.036
- Hu, J. M., Zhang, J. Q., & Cao, C. N. (2004). Oxygen evolution reaction on IrO 2-based DSA(R) type electrodes: kinetics analysis of Tafel lines and EIS. International Journal of Hydrogen Energy, 29(8), 791-797. https://doi.org/10.1016/j.ijhydene.2003.09.007
- Mansfeld, F. (2005). Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corrosion Science, 47(12), 3178-3186. https://doi.org/10.1016/j.corsci.2005.04.012
- Kapalka, A., Foti, G., & Comninellis, C. (2008). Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications, 10(4), 607-610. https://doi.org/10.1016/j.elecom.2008.02.003
- Petrii, O. A., Nazmutdinov, R. R., Bronshtein, M. D., & Tsirlina, G. A. (2007). Life of the Tafel equation: Current understanding and prospects for the second century. Electrochimica acta, 52(11), 3493-3504. https://doi.org/10.1016/j.electacta.2006.10.014
- Gileadi, E., & Kirowa-Eisner, E. (2005). Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion. Corrosion science, 47(12), 3068-3085. https://doi.org/10.1016/j.corsci.2005.05.044
- Bockris, J. O. M., & Potter, E. C. (1952). The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. The Journal of Chemical Physics, 20(4), 614-628. https://doi.org/10.1063/1.1700503
- Bates, M. K., Jia, Q., Ramaswamy, N., Allen, R. J., & Mukerjee, S. (2015). Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction. The Journal of Physical Chemistry C, 119(10), 5467-5477. https://doi.org/10.1021/jp512311c