DOI QR코드

DOI QR Code

수소발생반응을 위한 Ni4Cr 나노 섬유 전기화학 촉매 합성 및 특성 분석

Synthesis and Characterization of Ni4Cr Nanofiber Electrocatalyst for Hydrogen Evolution Reaction

  • 이정훈 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 장명제 (한국과학기술연합대학원대학교 신소재공학부) ;
  • 박유세 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 최승목 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 김양도 (부산대학교 재료공학과) ;
  • 이규환 (한국기계연구원 부설 재료연구소 표면기술연구본부)
  • Lee, Jeong Hun (Surface Technology Department, Korea Institute of Materials Science) ;
  • Jang, Myeong Je (Surface Technology Department, Korea Institute of Materials Science) ;
  • Park, Yoo Sei (Surface Technology Department, Korea Institute of Materials Science) ;
  • Choi, Sung Mook (Surface Technology Department, Korea Institute of Materials Science) ;
  • Kim, Yang Do (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Kyu Hwan (Surface Technology Department, Korea Institute of Materials Science)
  • 투고 : 2017.10.10
  • 심사 : 2017.10.30
  • 발행 : 2017.10.31

초록

Hydrogen evolution reaction(HER) was studied over $Ni_4Cr$ nanofibers(NFs) prepared by electrospinning method and oxidation/reduction heat treatment for alkaline water electrolysis. The physicochemical and electrochemical properties such as average diameter, lattice parameter, HER activity of synthesized $Ni_4Cr$ NFs could be modified by proper electrospinning process condition and reduction temperature. It was shown that $Ni_4Cr$ NFs had average diameter from 151 to 273 nm. Also, it exhibited the overpotential between 0.419 V and 0.526 V at $1mA/cm^2$ and Tafel slope of -334.75 mV to -444.55 mV per decade in 1 M KOH solution. These results indicate that $Ni_4Cr$ NFs with reduction heat treatment at $600^{\circ}C$ show thinnest diameter and highest HER activity among the other catalysts.

키워드

참고문헌

  1. Demirbas, A., Kabli, M., Alamoudi, R. H., Ahmad, W., & Basahel, A. (2017). Renewable energy resource facilities in the Kingdom of Saudi Arabia: Prospects, social and political challenges. Energy Sources, Part B: Economics, Planning, and Policy, 12(1), 8-16. https://doi.org/10.1080/15567249.2014.996303
  2. Schlapbach, L., & Zuttel, A. (2001). Hydrogenstorage materials for mobile applications. Nature, 414(6861), 353-358. https://doi.org/10.1038/35104634
  3. Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International journal of hydrogen energy, 33(15), 4013-4029. https://doi.org/10.1016/j.ijhydene.2008.05.047
  4. Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International journal of hydrogen energy, 40(34), 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
  5. Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
  6. Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 100(2), 410-426. https://doi.org/10.1109/JPROC.2011.2156750
  7. Durst, J., Siebel, A., Simon, C., Hasche, F., Herranz, J., & Gasteiger, H. A. (2014). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 7(7), 2255-2260. https://doi.org/10.1039/C4EE00440J
  8. Chen, W. F., Sasaki, K., Ma, C., Frenkel, A. I., Marinkovic, N., Muckerman, J. T., ... & Adzic, R. R. (2012). Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angewandte Chemie International Edition, 51(25), 6131-6135. https://doi.org/10.1002/anie.201200699
  9. Morales-Guio, C. G., Stern, L. A., & Hu, X. (2014). Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18), 6555-6569. https://doi.org/10.1039/C3CS60468C
  10. Hu, W. (2000). Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis. International Journal of Hydrogen Energy, 25(2), 111-118. https://doi.org/10.1016/S0360-3199(99)00024-5
  11. Sheng, W., Myint, M., Chen, J. G., & Yan, Y. (2013). Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 6(5), 1509-1512. https://doi.org/10.1039/c3ee00045a
  12. Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., & Bao, X. (2014). Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy & Environmental Science, 7(6), 1919-1923. https://doi.org/10.1039/C4EE00370E
  13. Chen, L., & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. Journal of The Electrochemical Society, 138(11), 3321-3328. https://doi.org/10.1149/1.2085409
  14. Jaksic, J. M., Vojnovic, M. V., & Krstajic, N. V. (2000). Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes. Electrochimica Acta, 45(25), 4151-4158. https://doi.org/10.1016/S0013-4686(00)00549-1
  15. Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., ... & Dai, H. (2013). An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc, 135(23), 8452-8455. https://doi.org/10.1021/ja4027715
  16. Shervedani, R. K., & Lasia, A. (1997). Studies of the Hydrogen Evolution Reaction on Ni-P Electrodes. Journal of the Electrochemical Society, 144(2), 511-519. https://doi.org/10.1149/1.1837441
  17. Feng, L., Vrubel, H., Bensimon, M., & Hu, X. (2014). Easily-prepared dinickel phosphide (Ni 2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics, 16(13), 5917-5921. https://doi.org/10.1039/c4cp00482e
  18. Paseka, I. (1999). Influence of hydrogen absorption in amorphous Ni-P electrodes on double layer capacitance and charge transfer coefficient of hydrogen evolution reaction. Electrochimica acta, 44(25), 4551-4558. https://doi.org/10.1016/S0013-4686(99)00185-1
  19. Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M., & Liu, Y. (2010). Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS applied materials & interfaces, 2(10), 2915-2923. https://doi.org/10.1021/am100618h
  20. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research Part A, 60(4), 613-621. https://doi.org/10.1002/jbm.10167
  21. Gorji, M., Jeddi, A., & Gharehaghaji, A. A. (2012). Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. Journal of Applied Polymer Science, 125(5), 4135-4141. https://doi.org/10.1002/app.36611
  22. Leung, W. W. F., & Hung, C. H. (2012). Skin effect in nanofiber filtration of submicron aerosols. Separation and purification technology, 92, 174-180. https://doi.org/10.1016/j.seppur.2011.02.020
  23. Guo, P., Zhao, G., Chen, P., Lei, B., Jiang, L., Zhang, H., ... & Liu, M. (2014). Porphyrin nanoassemblies via surfactant-assisted assembly and single nanofiber nanoelectronic sensors for high-performance H2O2 vapor sensing. ACS nano, 8(4), 3402-3411. https://doi.org/10.1021/nn406071f
  24. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. https://doi.org/10.1088/0957-4484/17/14/R01
  25. Ra, E. J., Raymundo-Pinero, E., Lee, Y. H., & Beguin, F. (2009). High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 47(13), 2984-2992. https://doi.org/10.1016/j.carbon.2009.06.051
  26. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances, 28(3), 325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004
  27. Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World Scientific.
  28. Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703. https://doi.org/10.1002/anie.200604646
  29. Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
  30. Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216. https://doi.org/10.1088/0957-4484/7/3/009
  31. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  32. Shin, S. H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H. W. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of tissue engineering, 3(1), 2041731412443530.
  33. Collins, G., Federici, J., Imura, Y., & Catalani, L. H. (2012). Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. Journal of Applied Physics, 111(4), 044701. https://doi.org/10.1063/1.3682464
  34. Schiffman, J. D., & Schauer, C. L. (2007). One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules, 8(9), 2665-2667. https://doi.org/10.1021/bm7006983
  35. Schiffman, J. D., & Schauer, C. L. (2008). A review: electrospinning of biopolymer nanofibers and their applications. Polymer reviews, 48(2), 317-352. https://doi.org/10.1080/15583720802022182
  36. Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review. Journal of Materials Processing Technology, 167(2), 283-293. https://doi.org/10.1016/j.jmatprotec.2005.06.053
  37. Aruna, S. T., Balaji, L. S., Kumar, S. S., & Prakash, B. S. (2017). Electrospinning in solid oxide fuel cells-A review. Renewable and Sustainable Energy Reviews, 67, 673-682. https://doi.org/10.1016/j.rser.2016.09.003
  38. Li, X., Chen, Y., Huang, H., Mai, Y. W., & Zhou, L. (2016). Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review. Energy Storage Materials, 5, 58-92. https://doi.org/10.1016/j.ensm.2016.06.002
  39. Haider, A., Haider, S., & Kang, I. K. (2015). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry.
  40. Panthi, G., Park, M., Kim, H. Y., & Park, S. J. (2015). Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. Journal of Industrial and Engineering Chemistry, 24, 1-13. https://doi.org/10.1016/j.jiec.2014.09.011
  41. Khoo, W., & Koh, C. T. (2015, October). A Review of Electrospinning Process and Microstructure Morphology Control. In International Conference on Mechanical and Manufacturing Engineering (ICME2015).
  42. Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., ... & Ndesendo, V. M. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013.
  43. Ray, S. S., Chen, S. S., Li, C. W., Nguyen, N. C., & Nguyen, H. T. (2016). A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 6(88), 85495-85514. https://doi.org/10.1039/C6RA14952A
  44. Tomaszewski, P. E. (2002). Golden book of phase transitions. Wroclaw, 1, 1-123.
  45. Buschow, K. H. J., Van Engen, P. G., & Jongebreur, R. (1983). Magneto-optical properties of metallic ferromagnetic materials. Journal of magnetism and magnetic materials, 38(1), 1-22. https://doi.org/10.1016/0304-8853(83)90097-5
  46. Saalfeld, H. (1964). Strukturuntersuchungen im System Al2O3-Cr2O3. Zeitschrift fur Kristallographie-Crystalline Materials, 120(1-6), 342-348. https://doi.org/10.1524/zkri.1964.120.4-5.342
  47. Kohlhaas, R., Dunner, P., & Schmitz, P. N. (1967). The temperature-dependance of the lattice parameters of iron, cobalt, and nickel in the high temperature range. Z Angew Physik, 23(4).
  48. Zhang, G., Zhang, Y. C., Nadagouda, M., Han, C., O'Shea, K., El-Sheikh, S. M., ... & Dionysiou, D. D. (2014). Visible light-sensitized S, N and C co-doped polymorphic TiO 2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental, 144, 614-621. https://doi.org/10.1016/j.apcatb.2013.07.058
  49. Campbell, J. (2003). Castings. Butterworth-Heinemann.
  50. Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534-534. https://doi.org/10.1038/nnano.2011.145
  51. Lee, S. H., Tekmen, C., & Sigmund, W. M. (2005). Three-point bending of electrospun TiO 2 nanofibers. Materials Science and Engineering: A, 398(1), 77-81. https://doi.org/10.1016/j.msea.2005.03.014
  52. Kang, W., Cheng, B., Li, Q., Zhuang, X., & Ren, Y. (2011). A new method for preparing alumina nanofibers by electrospinning technology. Textile Research Journal, 81(2), 148-155. https://doi.org/10.1177/0040517510377831
  53. Ruiz-Rosas, R., Bedia, J., Rosas, J. M., Lallave, M., Loscertales, I. G., Rodriguez-Mirasol, J., & Cordero, T. (2012). Methanol decomposition on electrospun zirconia nanofibers. Catalysis today, 187(1), 77-87. https://doi.org/10.1016/j.cattod.2011.10.031
  54. Li, D., Wang, Y., & Xia, Y. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano letters, 3(8), 1167-1171. https://doi.org/10.1021/nl0344256
  55. Rahim, M. A., Hameed, R. A., & Khalil, M. W. (2004). Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. Journal of power sources, 134(2), 160-169. https://doi.org/10.1016/j.jpowsour.2004.02.034
  56. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., & Nejati, M. (2009). Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Bioelectrochemistry, 75(1), 1-8. https://doi.org/10.1016/j.bioelechem.2008.11.006
  57. Ardakani, M. M., Taleat, Z., Beitollahi, H., Salavati-Niasari, M., Mirjalili, B. B. F., & Taghavinia, N. (2008). Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO 2 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry, 624(1), 73-78. https://doi.org/10.1016/j.jelechem.2008.07.027
  58. Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J. B., & Browning, D. (2008). Power from marine sediment fuel cells: the influence of anode material. Journal of Applied Electrochemistry, 38(9), 1313. https://doi.org/10.1007/s10800-008-9561-z
  59. Schultz, T., & Sundmacher, K. (2005). Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation. Journal of power sources, 145(2), 435-462. https://doi.org/10.1016/j.jpowsour.2005.02.036
  60. Hu, J. M., Zhang, J. Q., & Cao, C. N. (2004). Oxygen evolution reaction on IrO 2-based DSA(R) type electrodes: kinetics analysis of Tafel lines and EIS. International Journal of Hydrogen Energy, 29(8), 791-797. https://doi.org/10.1016/j.ijhydene.2003.09.007
  61. Mansfeld, F. (2005). Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corrosion Science, 47(12), 3178-3186. https://doi.org/10.1016/j.corsci.2005.04.012
  62. Kapalka, A., Foti, G., & Comninellis, C. (2008). Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications, 10(4), 607-610. https://doi.org/10.1016/j.elecom.2008.02.003
  63. Petrii, O. A., Nazmutdinov, R. R., Bronshtein, M. D., & Tsirlina, G. A. (2007). Life of the Tafel equation: Current understanding and prospects for the second century. Electrochimica acta, 52(11), 3493-3504. https://doi.org/10.1016/j.electacta.2006.10.014
  64. Gileadi, E., & Kirowa-Eisner, E. (2005). Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion. Corrosion science, 47(12), 3068-3085. https://doi.org/10.1016/j.corsci.2005.05.044
  65. Bockris, J. O. M., & Potter, E. C. (1952). The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. The Journal of Chemical Physics, 20(4), 614-628. https://doi.org/10.1063/1.1700503
  66. Bates, M. K., Jia, Q., Ramaswamy, N., Allen, R. J., & Mukerjee, S. (2015). Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction. The Journal of Physical Chemistry C, 119(10), 5467-5477. https://doi.org/10.1021/jp512311c