DOI QR코드

DOI QR Code

동북아시아 지역에서 MODIS와 MI에 의한 에어로졸 광학두께 비교

Comparison of Aerosol Optical Thicknesses by MODIS and MI in Northeast Asia

  • 김은규 (강릉원주대학교 대기환경과학과) ;
  • 이규태 (강릉원주대학교 대기환경과학과) ;
  • 정명재 (강릉원주대학교 대기환경과학과)
  • Kim, Eun-kyu (Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Jung, Myeong-Jae (Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2017.06.15
  • 심사 : 2017.08.02
  • 발행 : 2017.10.30

초록

본 연구에서는 동북아시아($15{\sim}55^{\circ}E$, $90{\sim}150^{\circ}N$) 영역에 대하여 극궤도 위성 Terra와 Aqua에 탑재된 Moderate Resolution Imaging Spectrometer (MODIS) 센서와 우리나라 정지궤도 위성인 통신해양기상위성(Communication, Ocean and Meteorological Satellite, COMS)에 탑재된 Meteorological Imager (MI) 센서에 의한 에어로졸 광학두께(AOT) 산출 결과와 지상의 Aerosol Robotic Network (AERONET) 관측 자료를 비교 분석하였다. 그 결과 MODIS와 MI에 의한 에어로졸 광학두께는 해양에서 비교적 잘 일치하였으나 구름 가장자리와 육지에서는 두 센서의 에어로졸 광학두께 차이가 크게 나타났다. 그 이유로서 MODIS는 가시 채널과 적외 채널을 혼용하는 반면 MI는 오직 가시채널 만 사용하기 때문에 구름 가장자리의 옅은 구름을 에어로졸로 인식할 수 있고 육지에서는 지표면 특성에 따라 MODIS와 MI에 의한 에어로졸 광학두께 산출 차이가 발생된다. 따라서 MI 에어로졸 광학두께는 구름 가장자리와 지표면 특성의 영향을 주는 지표면 반사도의 정확성 개선을 통해 에어로졸 광학두께 산출 결과를 개선할 수 있다고 사료된다.

The aerosol optical thickness data retrieved by Moderate Resolution Imaging Spectrometer (MODIS) of Terra & Aqua and Meteorological Imager (MI) of Communication Ocean and Meteorological Satellite (COMS) are analyzed and compared with the measurement data of Aerosol Robotic Network (AERONET) in Northeast Asia. As the result, the aerosol optical thickness retrieved by MODIS and MI were well agreed at ocean region but quite different at cloud edge and barren surface. The reason was that MODIS aerosol optical thickness was retrieved using the visible and infrared channels but MI was retrieved with the visible channel only. Consequentially, the thin cloud be misinterpreted as aerosol by MI and the difference between MODIS and MI aerosol optical thicknesses could be occurred with Normal Distribution Vegetation Index (NDVI) and land surface property. Therefore, the accuracies of clear/cloud region and surface reflectivity are required in order to improve the aerosol optical thickness algorithm by MI.

키워드

참고문헌

  1. Chu, D. A., Y. J. Kaufman, G. Zibordi, J. D. Chern, J. Mao, C. Li, and B. N. Holben, 2003. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Journal of Geophysical Research: Atmospheres, 108(D21).
  2. Dubovik, O., A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. Van der Zande, J. F. Leon, M. Sorokin, I. Slutsker, and W. J. Van der Zande, 2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, Journal of Geophysical Research: Atmospheres, 111(D11).
  3. Dubovik, O. and M. D. King, 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, Journal of Geophysical Research, 105(D16): 20673-20696. https://doi.org/10.1029/2000JD900282
  4. IPCC, 2007. Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge Univ., New York, USA.
  5. Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnor, 1998. AERONET-A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66(1): 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  6. Jeong, M.-J., Z. Li, D. A. Chu, and S. C. Tsay, 2005. Quality and compatibility analyses of global aerosol products derived from the advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer, Journal of Geophysical Research: Atmospheres, 110(D10).
  7. Jang, H. S., H. J. Song, H. W. Chun, B. J. Sohn, and T. Takamura, 2011. Validation of MODISderived aerosol optical thickness using SKYNET measurements over East Asia, Journal of the Korean Earth Science Society, 32(1): 21-32 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.1.21
  8. Kaufman, Y. J., O. Dubovik, A. Smirnov, and B. N. Holben, 2002. Remote sensing of non-aerosol absorption in cloud free atmosphere, Geophysical Research Letters, 29(18).
  9. Lee, K. H., C. S. Hong, and Y. J. Kim, 2004. Atmospheric aerosol monitoring over Northeast Asia during 2001 from MODIS and TOMS data, Korean Journal of Remote Sensing, 20(2): 77-89 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2004.20.2.77
  10. Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean, Atmospheric Measurement Techniques, 6(11): 2989-3034. https://doi.org/10.5194/amt-6-2989-2013
  11. Remer, L. A., Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R. R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, 2005. The MODIS aerosol algorithm, products, and validation, Journal of the Atmospheric Sciences, 62(4): 947-973. https://doi.org/10.1175/JAS3385.1
  12. Stocker, T. F., D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.
  13. Twomey, S., 1977. The influence of pollution on the shortwave albedo of clouds, Journal of the Atmospheric Sciences, 34(7): 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2