DOI QR코드

DOI QR Code

Retrieving Volcanic Ash Information Using COMS Satellite (MI) and Landsat-8 (OLI, TIRS) Satellite Imagery: A Case Study of Sakurajima Volcano

천리안 위성영상(MI)과 Landsat-8 위성영상(OLI, TIRS)을 이용한 화산재 정보 산출: 사쿠라지마 화산의 사례연구

  • Choi, Yoon-Ho (Earthquake and Volcano Research Division, Earthquake and Volcano Center, Korea Meteorological Administration) ;
  • Lee, Won-Jin (Earthquake and Volcano Research Division, Earthquake and Volcano Center, Korea Meteorological Administration) ;
  • Park, Sun-Cheon (Earthquake and Volcano Research Division, Earthquake and Volcano Center, Korea Meteorological Administration) ;
  • Sun, Jongsun (Earthquake and Volcano Research Division, Earthquake and Volcano Center, Korea Meteorological Administration) ;
  • Lee, Duk Kee (Earthquake and Volcano Research Division, Earthquake and Volcano Center, Korea Meteorological Administration)
  • 최윤호 (기상청 지진화산센터 지진화산연구과) ;
  • 이원진 (기상청 지진화산센터 지진화산연구과) ;
  • 박순천 (기상청 지진화산센터 지진화산연구과) ;
  • 선종선 (기상청 지진화산센터 지진화산연구과) ;
  • 이덕기 (기상청 지진화산센터 지진화산연구과)
  • Received : 2017.08.08
  • Accepted : 2017.09.22
  • Published : 2017.10.30

Abstract

Volcanic ash is a fine particle smaller than 2 mm in diameters. It falls after the volcanic eruption and causes various damages to transportation, manufacturing industry and respiration of living things. Therefore diffusion information of volcanic ash is highly significant for preventing the damages from it. It is advantageous to utilize satellites for observing the widely diffusing volcanic ash. In this study volcanic ash diffusion information about two eruptions of Mt. Sakurajima were calculated using the geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) and polar-orbiting satellite, Landsat-8 Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). The direction and velocity of volcanic ash diffusion were analyzed by extracting the volcanic ash pixels from COMS-MI images and the height was retrieved by adjusting the shadow method to Landsat-8 images. In comparison between the results of this study and those of Volcanic Ash Advisories center (VAAC), the volcanic ash tend to diffuse the same direction in both case. However, the diffusion velocity was about four times slower than VAAC information. Moreover, VAAC only provide an ash height while our study produced a variety of height information with respect to ash diffusion. The reason for different results is measured location. In case of VAAC, they produced approximate ash information around volcano crater to rapid response, while we conducted an analysis of the ash diffusion whole area using ash observed images. It is important to measure ash diffusion when large-scale eruption occurs around the Korean peninsula. In this study, it can be used to produce various ash information about the ash diffusion area using different characteristics satellite images.

화산재는 화산쇄설물 중 2 mm 이하의 크기를 가지는 작은 미세 암편으로 화산 분화 이후 낙하에 의해 여러 가지 피해를 가져온다. 화산재 피해는 운송업과 생산업 그리고 동 식물 및 인간의 호흡기 활동에 영향을 줄 수 있다. 따라서 이러한 화산재의 피해를 예방하기 위해서는 화산재 확산 정보가 중요하며 광범위하게 확산되는 화산재 관측은 위성을 활용하는 것이 효과적이다. 본 연구에서는 일본 사쿠라지마 화산의 두 번의 분화 사례를 연구하였으며 정지궤도 위성인 천리안 위성(Communication, Ocean and Meteorological Satellite: COMS)의 기상 탑재체(Meteorological Imager: MI) 영상과 극궤도 위성인 Landsat-8의 Operational Land Imager (OLI), Thermal InfraRed Sensor (TIRS) 영상을 활용하여 화산재 확산 정보를 산출하였다. COMSMI 영상으로부터 화산재 화소를 추출하여 화산재의 확산 방향과 속도를 분석하였으며, Landsat-8 영상에 대하여 그림자 측정법을 적용하여 화산재 높이를 산출하였다. 또한 본 연구에서 산출된 결과를 도쿄 화산재 주의보센터(Volcanic Ash Advisories center: VAAC)와 비교하였다. 비교 결과, 화산재 확산의 방향은 두 연구에서 모두 유사한 방향으로 산출되었으나 화산재 속도는 화산재주의보센터에서 제공되는 속도에 비해 약 4배 느리게 산출되었다. 또한, 화산재 높이는 화산재 주의보센터 정보에서는 단일 값으로 제공되지만 본 연구에서는 화산재 확산위치에 따라 다르게 관측됨을 확인하였다. VAAC의 경우 화산 분화의 빠른 대응을 위해 분화구 주변 지역에 대해 대략적 값을 산정하지만 본 연구에서는 화산재 확산이 중요하기 때문에 실제 화산재 확산이 관측된 다양한 영상으로부터 화산재가 확산된 전체 지역에 대한 정보를 산출하였기 때문에 차이가 발생하였을 것으로 판단된다. 대규모 분화가 발생할 경우 한반도에 미치는 영향을 확인하기 위해서는 화산재 확산 관측이 중요하다. 본 연구를 통해 서로 다른 특성을 지니는 위성영상을 활용하여 화산재가 확산된 전체 영역에 대해 다양한 정보를 산출하는데 활용될 수 있을 것이다.

Keywords

References

  1. Ackerman, S.A., 1989. Using the radiative temperature difference at 3.7 and 11 ${\mu}m$ to track dust outbreaks, Remote Sensing of Environment, 27: 129-133. https://doi.org/10.1016/0034-4257(89)90012-6
  2. Chavez, P.S., 1996. Image-based atmospheric corrections - revisited and improved, Photogrammetric Engineering and Remote Sensing, 62(9): 1025-1036.
  3. Dubuisson, P., H. Herbin, F. Minvielle, M. Compiegne, F. Thieuleux, F. Parol, and J. Pelon, 2014. Remote sensing of volcanic ash plumes from thermal infrared: a case study analysis from SEVIRI, MODIS and IASI instruments, Atmospheric Measurement Techniques, 7: 359-371. https://doi.org/10.5194/amt-7-359-2014
  4. Emili, E., C. Popp, M. Petitta, M. Riffler, S. Wunderle, and M. Zebisch, 2010. PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over the complex terrain of the European Alpine region, Remote Sensing of Environment, 114: 2485-2499. https://doi.org/10.1016/j.rse.2010.05.024
  5. Fukushima, H. and M. Toratani, 1997. Asian dust aerosol: Optical effect on satellite ocean color signal, Journal of Geophysical Research, 102: 119-17, 130.
  6. Gislason, S.R., T. Hassenkam, S. Nedel, N. Bovet, E.S. Eiriksdottir, H.A. Alfredsson, C.P. Hem, Z.I. Balogh, K. Dideriksen, N. Oskarsson, B. Sigfusson, G. Larsen, and S.L.S. Stipp, 2011. Characterization of Eyjafjallajokull volcanic ash particles and a protocol for rapid risk assessment, National Acad Sciences, 108(18): 7307-7312. https://doi.org/10.1073/pnas.1015053108
  7. Gudmundsson, M.T., R. Pedersen, K. Vogfjord, B. Thorbjarnardottir, S. Jakobsdottir, and M.J. Roberts, 2010. Eruption of Eyjafjallajokull volcano, Iceland, Earth and Space Science News, 95: 190-191.
  8. Guffanti, M., T.J. Casadevall and K. Budding, 2010. Encounters of Aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009, United States Geological Survey, Data Series 545: 1-12.
  9. Horwell, C.J. and P.J. Baxter, 2006. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation, Bulletin of Volcanology, 69: 1-24. https://doi.org/10.1007/s00445-006-0052-y
  10. Iguchi, M., 2013. Magma movement from the deep to shallow Sakurajima volcano as revealed by geophysical observations, Bulletin of the Volcanological Society of Japan, 58: 1-18.
  11. Ji, L., X. Geng, K. Sun, K. Zhao, and P. Gong, 2015. Target detection method for water mapping using landsat 8 OLI/TIRS imagery, Water, 7(2) 794-817. https://doi.org/10.3390/w7020794
  12. Jin, S., C. Homer, L. Yang, G. Xian, J. Fry, J. Danielson, and P.A. Townsend, 2013. Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA, International Journal of Remote Sensing, 34(5): 1540-1560. https://doi.org/10.1080/01431161.2012.720045
  13. Kim, K., E.H. Hwang, Y.K. Lee, and C.W. Lee, 2014, Sakurajima volcano eruption detected by GOCI and geomagnetic variation analysis, Korean Journal of Remote Sensing, 30(2): 259-274 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.2.9
  14. Lee, K.H. and E.S. Jang, 2014. Monitoring of the volcanic ash using satellite observation and trajectory analysis model, Korean Journal of Remote Sensing, 30(1): 13-24 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.1.2
  15. Lee, S.K., G.H. Ryu, E.H. Hwang, J.K. Choi, and C.W. Lee, 2014. Predicting the extent of the volcanic ash dispersion using GOCI image and HYSPLIT model, Korean Journal of Remote Sensing, 30: 303-314 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.2.12
  16. Machida, H., 2002. Volcanoes and tephras in the Japan area, Global Environmental Research, 6: 19-28.
  17. Omori, F., 1914. The Sakura-jima eruptions and earthquakes I, Bulletin of the Imperial Earthquake Investigation Committe, 8: 5-34.
  18. Prata, A.J., 1989a. Observations of volcanic ash clouds in the 10-12 ${\mu}m$ window using AVHRR/2 data, International Journal of Remote Sensing, 10: 751-761. https://doi.org/10.1080/01431168908903916
  19. Prata, A.J., 1989b. Infrared radiative transfer calculations for volcanic ash clouds, Geophysical Research Letters, 16: 1293-1296. https://doi.org/10.1029/GL016i011p01293
  20. Richards, M.S., S.A. Ackerman, M.J. Pavolonis, W.F. Feltz, and A. Tupper, 2006. Volcanic ash cloud heights using the MODIS CO2-slicing algorithm, 12th Conference on Aviation Range and Aerospace Meteorology, Atlanta, Ga., Jan. 29-Feb. 2, 97.
  21. Simpson, J.J., T. McIntire, Z. Jin, and J.R. Stitt, 2000. Improved cloud top height retrieval under arbitrary viewing and illumination conditions using AVHRR data, Remote Sensing of Environment, 72: 95-110. https://doi.org/10.1016/S0034-4257(99)00095-4
  22. Stohl, A., A.J. S. Prata, L. Eckhardt, A. Henne Clarisse, Durant, S., N.I. Kristiansen, A. Minikin, U. Schumann, P. Seibert, K., Stebel, H.E. Thomas, T. Torseth, K., Thorsteinsson, and B. Weinzierl, 2010. Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajokull eruption, Atmospheric Chemistry and Physics, 11: 4333-4351.
  23. Vanhellemont, Q., G. Neukemans, and K. Ruddick, 2014. Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution, Remote Sensing of Environment, 146: 49-62. https://doi.org/10.1016/j.rse.2013.03.035
  24. Watson, I.M., V.J. Realmuto, W.I. Rose, A.J. Prata, G.J.S. Bluth, Y. Gu, C.E. Bader, and T. Yu, 2004. Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer, Journal of Volcanology and Geothermal Research, 135: 75-89. https://doi.org/10.1016/j.jvolgeores.2003.12.017
  25. Zaksek, K., M. Hort, J. Zaletelj, and B. Langmann, 2013. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary statellites, Atmospheric Chemistry and Physics, 13: 2589-2606. https://doi.org/10.5194/acp-13-2589-2013

Cited by

  1. 지진·화산 연구에 대한 위성영상 활용 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.4.1