DOI QR코드

DOI QR Code

고신뢰성 지상시험지원장비 조기 확보를 위한 시나리오 기반 위성 탑재체 패킷 분석방법

Scenario Based Operating Satellite Payload Data Analysis Method to Secure Highly Reliable EGSE Early

  • 이종태 (한국항공우주연구원 위성탑재체연구단) ;
  • 이기준 (충남대학교 전자공학과)
  • Lee, Jong-Tae (Satellite Payload Research Office, Korea Aerospace Research Institute) ;
  • Lee, Ki-Jun (Department of Electronics Engineering, Chungnam National University)
  • 투고 : 2017.07.07
  • 심사 : 2017.09.22
  • 발행 : 2017.10.30

초록

탑재체를 포함한 위성은 발사 이후 문제 발생시 조치할 수 있는 방법이 한정적이므로, 지상시험지원장비를 이용하여 그 기능을 충분히 검증하여야 한다. 또한 위성의 개발기간이 단축되고 있는 추세와 지상시험지원장비의 개발 완료시점이 전장품 엔지니어링 모델 개발완료보다 앞서야 한다는 점을 고려하면, 지상시험지원장비의 조기 확보는 위성 전체의 개발일정 준수를 위해서 반드시 필요하다고 할 수 있다. 본 논문에서는 지상시험지원장비의 일부인 탑재체 패킷 분석장치를 기능별 모듈화와 외부 파라메터화를 통해 시나리오 기반으로 동작할 수 있게 고안하여 고신뢰도의 지상시험지원장비 조기 확보방안을 제시하고, 구현한 장비를 실재 위성 개발사업에 적용한 결과를 보여준다.

Since satellites, including payloads, are limited in how they can respond to problems after launch, the functionality of the satellite should be verified sufficiently by EGSE (Electrical Ground Support Equipment). In addition, considering the trend that the development period of the satellite is shortening and the development of the EGSE must precede the development of the engineering model of electronic equipment, early securing of EGSE is necessary to comply with the development schedule of the entire satellite. In this paper, we propose a method for early securing highly reliable EGSE by devising a scenario based operating payload packet analyzer, which is a part of the EGSE, through functional modularization and external parameterization, and show the result of applying the implemented payload packet analyzer to real satellite program.

키워드

참고문헌

  1. Aguirre, M. A., 2012. Introduction to Space Systems: Design and Synthesis, Springer Science & Business Media, New York, USA.
  2. Canoy, J., 2011. Improving electrical ground support equipment development for satellite testing, Proc. of IEEE AUTOTESTCON, Baltimore, MD, Sep. 12-15, pp. 92-101.
  3. CCSDS, 2000. Packet Telemetry, CCSDS 102.0-B-5, http://public.ccsds.org/Publications/SilverBooks.aspx, Accessed at Apr. 24, 2017.
  4. CCSDS, 2015. AOS Space Data Link Protocol, CCSDS 732.0-B-3, http://public.ccsds.org/Publications/BlueBooks.aspx, Accessed at Apr. 24, 2017.
  5. Duro, N., F. Moreira, J. Rogado, J. Reis, and N. Peccia, 2005. Technology harmonization-developing a reference architecture for the ground segment software, Proc. of IEEE Aerospace Conference, Big Sky, MT, Mar. 5-12, pp. 3968-3979.
  6. ESA, 2016. Schiaparelli landing investigation makes progress, http://exploration.esa.int/mars/58590-schiaparelli-landing-investigation-makes-progress/, Accessed at May 14, 2017.
  7. Finnigan, J. V. and J. Blanchette, 2008. A forwardlooking software reuse strategy, Proc. of IEEE Aerospace Conference, Big Sky, MT, Mar. 1-8, pp. 1-9.
  8. Isbell, D. and D. Savage, 1999. Mars climate orbiter failure board releases report, numerous NASA actions underway in response, Mars Climate Orbiter Official Website, http://mars.nasa.gov/msp98/news/mco991110.html, Accessed at May 14, 2017.
  9. Jones, M., E. Gomez, A. Mantineo and U. K. Mortensen, 2002. Introducing ECSS Software-Engineering Standards within ESA, ESA bulletin 111: 132-139.
  10. Levesque, M., J. Louis and A. M. Guerrero, 2000. Test execution control tool: Automating testing in spacecraft integration and test environments, Proc. of IEEE Aerospace Conference Proceedings, Big Sky, MT, Mar. 25, vol. 2, pp. 389-395.
  11. Nguyen, H. D. and I. A. Miller, 2007. Reliability and efficiency of electrical ground support equipment through automation, modularization, and standardization, Proc. of IEEE AUTOTESTCON, Baltimore, MD, Sep. 17-20, pp. 311-320.
  12. Nguyen, H. D. and I. A. Miller, 2012. Cost impact of automated acceptance testing of Electrical Ground Support Equipment for spacecraft testing, IEEE Instrumentation & Measurement Magazine, 15(4): 28-33. https://doi.org/10.1109/MIM.2012.6263981
  13. Park, J.-H., S.-W. Cho, Y.-Y. Kim, D.-C. Chae, Y.-G. Huh and J.-Y. Choi, 2013. Development Trend of Electrical Ground Support Equipments for Space Program, Current Industrial and Technological Trends in Aerospace, 11(2): 62-70 (in Korean with English abstract).
  14. TORO, F. A. S., B. T. VU and M. S. Hamilton, 2011. Qualification of Electrical Ground Support Equipment for New Space Programs, Proc. of 15th World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2011, Orlando, FL, Jul. 19-22, pp. 19-22.
  15. U. S. DOD, 1995. Reliability Prediction of Electronic Equipment, MIL-HDBK-217F Notice 2, Department of Defense, Washington DC, USA.
  16. Wang, G., Y. Cui, S. Wang and X. Meng, 2011. Design and performance test of spacecraft test and operation software, Acta Astronautica, 68(11): 1774-1781. https://doi.org/10.1016/j.actaastro.2011.02.002