참고문헌
- J. P. Aubin, Applied Functional Analysis, Wiley-Interscience, New York, 1979.
- J. P. Aubin, Mathematical Methods of Game and Economic Theory, North-Holand, Amsterdam, 1979.
- C. Baiocchi and A. Capelo, Variational and Quasi-variational Inequalities: Applications to Free-Boundary Problems, Wiley-Intersci., New York, 1984.
- A. Bensoussan and J. L. Lions, Nouvelle formulation des problemes de controle impul- sionnel et applications, C. R. Acad. Sci. Paris Ser. A-B 29 (1973), 1189-1192.
- H. Brezis, L. Nirenberg, and G. Stampacchia, A remark on Ky Fan's minimax principle, Boll. Un. Mat. Ital. 6 (1972), no. 4, 293-300.
- F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. https://doi.org/10.1007/BF01350721
- D. Chan and J. S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res. 7 (1982), no. 2, 211-222. https://doi.org/10.1287/moor.7.2.211
- M. S. R. Chowdhury, The surjectivity of upper-hemi-continuous and pseudo-monotone type II operators in reflexive Banach spaces, Ganit: J. Bangladesh Math. Soc. 20 (2000), 45-53.
- M. S. R. Chowdhury, Generalized bi-quasi-variational inequalities for upper hemi-continuous opera- tors in non-compact settings, Acta Math. Hungar. 92 (2001), no. 1-2, 111-120. https://doi.org/10.1023/A:1013760212678
- M. S. R. Chowdhury and K. K. Tan, Generalization of Ky Fan's minimax inequality with applications to generalized variational inequalities for pseudo-monotone operators and fixed theorems, J. Math. Anal. Appl. 204 (1996), no. 3, 910-929. https://doi.org/10.1006/jmaa.1996.0476
- M. S. R. Chowdhury and K. K. Tan, Note on generalized bi-quasi-variational inequalities, Appl. Math. Lett. 9 (1996), no. 3, 97-102. https://doi.org/10.1016/0893-9659(96)00039-0
- M. S. R. Chowdhury and K. K. Tan, Generalized variational inequalities for quasi-monotone operators and applications, Bull. Polish Acad. Sci. Math. 45 (1997), no. 1, 25-54.
- M. S. R. Chowdhury and K. K. Tan, Applications of pseudo-monotone operators with some kind of upper semi- continuity in generalized quasi-variational inequalities on non-compact sets, Proc. Amer. Math. Soc. 126 (1998), no. 10, 2957-2968. https://doi.org/10.1090/S0002-9939-98-04436-0
- M. S. R. Chowdhury and K. K. Tan, Application of upper hemi-continuous operators on generalized bi-quasi- variational inequalities in locally convex topological vector spaces, Positivity 3 (1999), no. 4, 333-344. https://doi.org/10.1023/A:1009849400516
- M. S. R. Chowdhury and K. K. Tan, Generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type I operators on compact sets, Positivity 12 (2008), no. 3, 511-523. https://doi.org/10.1007/s11117-007-2141-3
- M. S. R. Chowdhury and K. K. Tan, Generalized variational-like inequalities for pseudo-monotone type III opera- tors, Cent. Eur. J. Math. 6 (2008), no. 4, 526-536. https://doi.org/10.2478/s11533-008-0049-1
- M. S. R. Chowdhury and K. K. Tan, Generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type I operators on non-compact sets, Comput. Math. Appl. 60 (2010), no. 3, 423-431. https://doi.org/10.1016/j.camwa.2010.04.036
- M. S. R. Chowdhury and K. K. Tan, Generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type II operators on compact sets, Cent. Eur. J. Math. 8 (2010), no. 1, 158-169. https://doi.org/10.2478/s11533-009-0066-8
- M. S. R. Chowdhury and K. K. Tan, Study of generalized quasi-variational inequalities for lower and upper hemi- continuous operators on non-compact sets, Math. Inequal. Appl. 2 (1999), no. 1, 121- 134.
- M. S. R. Chowdhury and K. K. Tan, Generalized quasi-variational inequalities for upper semi-continuous operators on non-compact sets, Nonlinear Anal. 30 (1997), no. 8, 5389-5394. https://doi.org/10.1016/S0362-546X(97)00387-8
- M. S. R. Chowdhury and E. Tarafdar, Generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators with applications in non- compact settings and minimization problems, J. Inequal. Appl. 5 (2000), no. 1, 63-89.
- M. S. R. Chowdhury and E. Tarafdar, Existence theorems of generalized quasi-variational inequalities with upper hemi-continuous and demi operators on non compact sets, Math. Inequal. Appl. 2 (1999), no. 4, 585-597.
- M. S. R. Chowdhury, E. Tarafdar, and H. B. Thompson, Non-compact generalized variational inequalities for quasi-monotone, and hemi-continuous operators with applications, Acta. Math. Hung. 99 (2003), no. 1-2, 105-122. https://doi.org/10.1023/A:1024561429664
- M. S. R. Chowdhury and H. B. Thompson, Generalized variational-like inequalities for pseudo-monotone type II operators, Nonlinear Anal. 63 (2005), 321-330. https://doi.org/10.1016/j.na.2005.01.060
- X. P. Ding and E. Tarafdar, Generalized variational-like inequalities with pseudo- monotone set-valued mappings, Arch. Math. 74 (2000), no. 4, 302-313. https://doi.org/10.1007/s000130050447
- J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- K. Fan, A minimax inequality and applications, in "Inequalities, III" (O. Shisha, Ed.), pp. 103-113, Academic Press, San Diego, 1972.
- H. Kneser, Sur un theoreme fundamental de la theorie des jeux, C. R. Acad. Sci. Paris 234 (1952), 2418-2420.
- R. T. Rockafeller, Convex Analysis, Princeton Univ. Press, Princeton, 1970.
- M. H. Shih and K. K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), no. 2, 333-343. https://doi.org/10.1016/0022-247X(85)90029-0
- M. H. Shih and K. K. Tan, Generalized bi-quasi-variational inequalities, J. Math. Anal. Appl. 143 (1989), no. 1, 66-85. https://doi.org/10.1016/0022-247X(89)90029-2
- C. Stampacchia, Formes bilineaires coercitives sur les convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
- W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan (1976), no. 1, 166-181.
- C. L. Yen, A minimax inequality and its applications to variational inequalities, Pacific J. Math. 97 (1981), no. 2, 477-481. https://doi.org/10.2140/pjm.1981.97.477