DOI QR코드

DOI QR Code

Recursive Error-Component Correcting Method for 3D Shape Reconstruction

3차원 형상 복원을 위한 재귀적 오차 성분 보정 방법

  • Received : 2017.09.24
  • Accepted : 2017.10.11
  • Published : 2017.10.31

Abstract

This paper is a study on error correction for three-dimensional shape reconstruction based on factorization method. The existing error correction method based on factorization has a limitation of correction because it is optimized globally. Thus in this paper, we propose our new method which can find and correct the only major error influence factor toward three-dimensional reconstructed shape instead of global approach. We define the error-influenced factor in two-dimensional re-projection deviation space and directly control the error components. In addition, it is possible to improve the error correcting performance by recursively applying the above process. This approach has an advantage under noise because it controls the major error components without depending on any geometric information. The performance evaluation of the proposed algorithm is verified by simulation with synthetic and real image sequence to demonstrate noise robustness.

본 연구는 행렬인수분해 기반으로 3차원 형상의 복원을 위한 오차 보정에 관한 것입니다. 기존 행렬인수분해 기반 오차 보정 방법은 전역적인 최적화로 인해 보정에 한계가 있습니다. 따라서 본 논문에서는 전역적 접근 대신 3차원 복원 형상의 주요 오차 영향 인자를 찾아 보정하는 새로운 방법을 제시하였습니다. 우리는 오차 영향 인자를 2차원 재 투영 편차 공간에서 정의하고 그 오차 성분을 직접 보정합니다. 그리고 일련의 과정을 재귀적으로 반복 적용함으로서 오차 보정 성능을 개선시킬 수 있습니다. 이러한 접근 방법은 어떤 기하학적 정보에 의존하지 않고 영향도가 가장 큰 오차 성분 중심으로 제어하기 때문에 잡음에 장점을 가지고 있습니다. 제안한 알고리즘 성능 평가는 합성과 실제 영상 프레임으로 시뮬레이션하여 잡음에 강인한 특성을 증명했습니다.

Keywords

References

  1. M. Martinello, A. Wajs, S. Quan, H. Lee, C. Lim, T. Woo, W. Lee, S. S. Kim, and D. Lee, "Dual Aperture Photography: Image and Depth from a Mobile Camera Computational Photography" in Proceedings of the 2015 IEEE International Conference on Computational Photograph, Houston: TX, pp. 1-10, 2015.
  2. G. S. Lee, Y. W. Choi, M. H. Lee, S. G. Kim, and G. S. Cho, "Reconnaissance Surveying for Cultural Assets using Unmanned Aerial Vehicle," Journal of the Korean Cadastre Information Association, vol. 18, no. 3, pp. 25-34, Dec. 2016.
  3. D. W. Shin and Y. S. Ho, "Implementation of 3D object reconstruction using a pair of kinect cameras," in Proceeding of the 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Chian Mai: Thailand, pp. 1-4, 2014.
  4. F. Santoso, M. A. Garratt, M. R. Pickering, and M. Asikuzzaman, "3D Mapping for Visualization of Rigid Structures: A Review and Comparative Study," International Journal of IEEE Sensors, vol. 16, no. 6, pp. 1484-1507, Mar. 2016. https://doi.org/10.1109/JSEN.2015.2498940
  5. Q. T. Luong and O. Faugeras, "The fundamental matrix: Theory, algorithms, and stability analysis," International Journal of Computer Vision, vol. 17, no. 1, pp. 43-76, Jan. 1996. https://doi.org/10.1007/BF00127818
  6. C. Tomasi and T. Kanade, "Shape and motion from image streams under orthography: A factorization method," International Journal of Computer Vision, vol. 9, no. 2, pp. 137-154, Nov. 1992. https://doi.org/10.1007/BF00129684
  7. B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, "Bundle adjustment - A modern synthesis," in Vision Algorithms: Theory and Practice (W. Triggs, A. Zisserman, and R. Szeliski, eds.), New York: Springer Verlag, pp. 298-375, 2000.
  8. Y. S. Hung, W. K. Tang, "Projective reconstruction from multiple views with minimization of 2D reprojection error," International Journal of Computer Vision, vol.66, no. 3, pp. 305-317, Mar. 2006. https://doi.org/10.1007/s11263-005-3675-0
  9. S. Baker and I. Matthews, "Lucas-Kanade 20 Years On: A Unifying Framework," International Journal of Computer Vision, vol.56, no. 3, pp. 221-255, Mar. 2004. https://doi.org/10.1023/B:VISI.0000011205.11775.fd