DOI QR코드

DOI QR Code

The Design of Web-based Crop Information System Using Open-Source Framework and Remotely Sensed Data

오픈 소스 프레임워크와 원격 탐측자료를 이용한 웹 기반 작황 정보 시스템 설계

  • Nguyen, Minh Hieu (School of Civil and Environmental Engineering, Yonsei University) ;
  • Ma, Jong Won (School of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Kyungdo (National Institute of Agricultural Science, RDA) ;
  • Heo, Joon (School of Civil and Environmental Engineering, Yonsei University)
  • 우엔 민효 (연세대학교 건설환경공학과) ;
  • 마종원 (연세대학교 건설환경공학과) ;
  • 이경도 (농촌진흥청 국립농업과학원) ;
  • 허준 (연세대학교 건설환경공학과)
  • Received : 2017.09.15
  • Accepted : 2017.10.12
  • Published : 2017.10.30

Abstract

A crop information system can provide information regarding crop distribution, crop growth conditions, crop yield in various forms such as monitoring, forecasting, estimation or analysis. This paper presents the design and construction of a crop information system based on data collected in Korea, USA, and China. Therein, climate data including temperature, precipitation,solar radiation are used to evaluate the impact on crop growth, NDVI (Normalized Difference Vegetation Index) data is used in crop monitoring, and crop map data is utilized for the management of crop distribution. The system has achieved three prominent results: 1) Providing information with high frequency, 2) Automatically creating the report through the analysis of the data, 3) The users to easily approach the system and retrieve the information.

작황 정보 시스템은 작물 분포, 작황 정보 및 생산량에 대한 모니터링, 예측, 추정 또는 분석과 같은 다양한 형태를 통해 정보를 제공하며 본 논문은 한국, 미국 및 중국 데이터를 기반으로 구축한 웹기반 작황 정보 시스템을 제안한다. 온도, 강수량 및 일사량의 기후 데이터는 작물 성장에 미치는 영향을 분석하는데 사용되었으며, NDVI 데이터와 작물구분도 데이터는 각각 작물 모니터링과 작물 분포 관리를 목적으로 사용되었다. 본 시스템은 3가지의 주요 장점을 갖고 있으며 이는 다음과 같다: 1) 높은 시간 해상도의 데이터를 통한 정보 제공, 2) 보유 데이터 분석을 통한 보고서 작성의 자동화, 3) 사용자의 편리성을 위한 기능 제공.

Keywords

References

  1. Apache, 2017. Apache Tomcat, http://tomcat.apache.org, Accessed at Oct. 10, 2017.
  2. Becker-Reshef, I., C. Justice, M. Sullivan, E. Vermote, C. Tucker, A. Anyamba, J. Small, E. Pak, E. Masuoka, J. Schmaltz, and M. Hansen, 2010. Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project, Remote Sensing, 2(6): 1589-1609. https://doi.org/10.3390/rs2061589
  3. Bootstrap, 2017. Home, http://getbootstrap.com, Accessed at Sep. 28, 2017.
  4. Devore, J.L., 2011. Probability and Statistics for Engineering and the Sciences, Cengage learning, Boston, MA, USA.
  5. Esri, 2017. http://www.esri.com/about-esri, Accessed at Oct. 10, 2017.
  6. GeoServer, 2017. What is GeoServer, http://geoserver.org/about, Accessed at Sep. 10, 2017.
  7. GeoSolutions, 2017. GeoSolutions, http://www.geosolutions.it/about, Accessed at Sep. 10, 2017.
  8. jQuery, 2017. What is jQuery, https://jquery.com, Accessed at Sep. 8, 2017.
  9. Kendall, K.E., J.E. Kendall, E.J. Kendall, and J.A. Kendall, 2010. Systems analysis and design 8th, Prentice Hall, Upper Saddle River, NJ, USA.
  10. Leaflet, 2017. Overview, http://leafletjs.com, Accessed at Sep. 9, 2017.
  11. Li, L., J. Li, and Y. Tian, 2002. The Study on Web GIS Architecture Based on JNLP, Proc. of 2002 Processing and Applications Symposium, Ottawa, Canada, Jul. 9-12, vol. 34, pp. 106-112.
  12. MapBox, 2017. About MapBox, https://www.mapbox.com/about, Accessed at Sep. 9, 2017.
  13. MapServer, 2017. MapServer open source web mapping, http://mapserver.org/about.html, Accessed at Sep. 9, 2017.
  14. Morgan, L. and P. Finnegan, 2007. Benefits and drawbacks of open source software: an exploratory study of secondary software firms. International Federation for Information Processing-publications-IFIP, 234: 307. https://doi.org/10.1007/978-0-387-72486-7_33
  15. Murakami, Y., 2014. iFarm: development of web-based system of cultivation and cost management for agriculture, Prof. of 2014 8th International Conference on Complex Intelligent and Software Intensive Systems IEEE, Birmingham, UK, Jul. 2-4, pp. 624-627.
  16. Obe, R.O. and L.S. Hsu, 2015. PostGIS in action, Manning, Shelter Island, NY, US.
  17. OGC, 2017. Web Map Service, http://www.opengeospatial.org/standards/wms, Accessed at Sep. 9, 2017.
  18. OpenLayer, 2017. Overview, https://openlayers.org, Accessed at Sep. 9, 2017.
  19. Oracle, 2017. What are RESTful Web Services, http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html, Accessed at Sep. 10, 2017.
  20. Pascual, M., E. Alves, De T. Almeida, G. S. de Franca, H. Roig, and M. Holanda, 2012. An Architecture for Geographic Information Systems on the Web webGIS, Proc. of 2012 International Conference on Advanced Geographic Information Systems, Applications, and Services, Valencia, Spain, Jan. 30-Feb. 4, pp. 209-2014.
  21. Postgres, 2017. https://www.postgresql.org/about, Accessed at Sep. 10, 2017.
  22. Postgres, 2017. Raster Data Management, https://postgis.net/docs/using_raster_dataman.html, Accessed at Sep. 10, 2017.
  23. Shelestov, A.Y., A.N. Kravchenko, S.V. Skakun, S.V. Voloshin, and N.N. Kussul, 2013. Geospatial information system for agricultural monitoring, Cybernetics and Systems Analysis, 49(1): 124. https://doi.org/10.1007/s10559-013-9492-5
  24. SUPARCO, 2017. Crop Information Portal, http://dwms.fao.org/-test/geo_portal_en.asp, Accessed at Sep. 10, 2017.
  25. Takashima, S., K. Oyoshi, T. Fukuda, and N. Tomiyama, and T. Nagano, 2013. Asian rice crop monitoring for GEOGLAM, Proc. of 2013 2nd International Conference on Agro-Geoinformatics IEEE, Fairfax, USA, Aug. 12-16, pp. 398-401.
  26. Wu, B., J. Meng, Q. Li, N. Yan, X. Du, and M. Zhang, 2014. Remote sensing-based global crop monitoring: experiences with China's CropWatch system, International Journal of Digital Earth, 7(2): 113-137. https://doi.org/10.1080/17538947.2013.821185