DOI QR코드

DOI QR Code

Predicting Regional Soybean Yield using Crop Growth Simulation Model

작물 생육 모델을 이용한 지역단위 콩 수량 예측

  • Ban, Ho-Young (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Doug-Hwan (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan national University) ;
  • Lee, Byun-Woo (Department of Plant Science, Seoul National University)
  • 반호영 (서울대학교 농업생명과학연구원) ;
  • 최덕환 (서울대학교 농업생명과학연구원) ;
  • 안중배 (부산대학교 대기과학과) ;
  • 이변우 (서울대학교 식물생산과학부)
  • Received : 2017.08.18
  • Accepted : 2017.09.28
  • Published : 2017.10.30

Abstract

The present study was to develop an approach for predicting soybean yield using a crop growth simulation model at the regional level where the detailed and site-specific information on cultivation management practices is not easily accessible for model input. CROPGRO-Soybean model included in Decision Support System for Agrotechnology Transfer (DSSAT) was employed for this study, and Illinois which is a major soybean production region of USA was selected as a study region. As a first step to predict soybean yield of Illinois using CROPGRO-Soybean model, genetic coefficients representative for each soybean maturity group (MG I~VI) were estimated through sowing date experiments using domestic and foreign cultivars with diverse maturity in Seoul National University Farm ($37.27^{\circ}N$, $126.99^{\circ}E$) for two years. The model using the representative genetic coefficients simulated the developmental stages of cultivars within each maturity group fairly well. Soybean yields for the grids of $10km{\times}10km$ in Illinois state were simulated from 2,000 to 2,011 with weather data under 18 simulation conditions including the combinations of three maturity groups, three seeding dates and two irrigation regimes. Planting dates and maturity groups were assigned differently to the three sub-regions divided longitudinally. The yearly state yields that were estimated by averaging all the grid yields simulated under non-irrigated and fully-Irrigated conditions showed a big difference from the statistical yields and did not explain the annual trend of yield increase due to the improved cultivation technologies. Using the grain yield data of 9 agricultural districts in Illinois observed and estimated from the simulated grid yield under 18 simulation conditions, a multiple regression model was constructed to estimate soybean yield at agricultural district level. In this model a year variable was also added to reflect the yearly yield trend. This model explained the yearly and district yield variation fairly well with a determination coefficients of $R^2=0.61$ (n = 108). Yearly state yields which were calculated by weighting the model-estimated yearly average agricultural district yield by the cultivation area of each agricultural district showed very close correspondence ($R^2=0.80$) to the yearly statistical state yields. Furthermore, the model predicted state yield fairly well in 2012 in which data were not used for the model construction and severe yield reduction was recorded due to drought.

본 연구에서는 재배 방법, 토양 특성 등의 정보를 상세하게 수집하기 어려운 지역단위의 콩 작황을 작물생육 모델을 이용하여 예측하는 방법을 개발하고자 하였다. 작물 생육 모델은 DSSAT에 포함된 CROPGRO-Soybean 모델을 이용하였고, 미국의 주요 콩 생산지역인 Illinois주를 연구 사례지역으로 선택하였다. CROPGRO-Soybean 모델을 이용하여 Illinois주의 콩 수량을 예측하기 위한 첫 단계로 다양한 성숙군에 속하는 국내외 품종들을 수집하여 서울대학교농장($37.27^{\circ}N$, $126.99^{\circ}E$)에서 2년동안 파종기 실험을 하여 성숙군(maturity group) I~VI까지의 성숙군별 대표 품종모수(genetic coefficients)를 추정하였다. 대표 품종모수는 각 성숙군 내에 포함되어 있는 품종들의 발육을 매우 정확하게 추정하였다. $10km{\times}10km$ 격자 단위의 기상자료를 바탕으로 성숙군(3), 파종시기(3), 관개여부(2) 등을 조합하여 18가지 조건으로 2000년에서 2011년까지 수량을 각각 모의 하였다. 성숙군과 파종시기는 Illinois주를 위도에 따라 3등분하여 각각 다르게 설정하였다. 관개 및 무관개 조건으로 구분하여 격자 별 모의결과로부터 Illinois주 전체 평균 모의수량을 구하여 연도 별 통계 수량과 비교한 결과 두 경우 모두 실제 수량과 큰 차이를 보일 뿐만 아니라 연차에 따른 수량 변동과 증가 경향을 반영하지 못하였다. 이러한 한계를 극복하고자 처리 별 격자 별로 모의된 수량을 수량을 18개 모의 조건 별로 평균하여 구한 9개 농업지구의 연도별 수량을 독립 변수, 농업지구의 연도별 통계수량을 종속 변수로 하는 중회귀 모델을 구축하였다. 18개 모의 조건 별 수량 외에 품종 개량, 재배 기술 발전 등에 따른 수량의 연차적 변화경향을 반영하기 위하여 연도를 독립변수로 추가하였으며, 중회귀모델은 농업지구와 연도별 수량 변이를 비교적 잘 예측($R^2=0.61$, n=108)하였다. 중회귀 모델로 추정한 9개 농업지구의 연도별 수량을 농업지구별 재배 면적으로 가중 평균한 Illinois의 연도별 추정수량은 통계수량에 매우 근사하였다($R^2=0.80$). 뿐만 아니라 모델 구축 대상연도가 아니고 가뭄으로 수량이 크게 감소한 2012년의 예측 수량은 $3006kg\;ha^{-1}$로 통계수량 $2890kg\;ha^{-1}$$116kg\;ha^{-1}$의 근사한 차이를 보였다.

Keywords

References

  1. Ahn, J.B., J.L. Lee, and E.S. Im, 2012. The Reproducibility of Surface Air Temperature over South Korea Using Dynamical Downscaling and Statistical Correction, Journal of the Meteorological Society of Japan, 90(4): 493-507. https://doi.org/10.2151/jmsj.2012-404
  2. Banterng, P., G. Hoogenboom, A. Patanothai, P, Singh, S.P. Wani, P. Pathak, S. Tongpoonpol, S. Atichart, P. Srihaban, S. Buranaviriyakul, A. Jintrawet, and T.C. Nguyen, 2010. Application of the cropping system model (CSM)-CROPGRO-Soybean for determining optimum management strategies for soybean in tropical environments, Journal of Agronomy and Crop Science, 196: 231-242.
  3. Boote, K.J., J.W. Jones, W.D. Batchelor, E.D. Nafziger, and O. Myers. 2003. Genetic coefficients in the CROPGRO-Soybean Model: Links to field performance and genomics, Agronomy Journal, 95: 32-51. https://doi.org/10.2134/agronj2003.0032
  4. Bridges, K., S. Wilson, and R. Perry, 2015. Center Pivot Irrigation in Illinois 2012 and 2014, http://www.isws.illinois.edu/iswsdocs/maps/ISWSMS2014-03.pdf, Accessed at Aug. 17, 2017.
  5. Cockx, K., T. Van de Voorde, F. Canters, L. Poelmans, I.Uljee, G. Engelen, K. de Jong, D. Karssenberg, and J. van der Kwast, 2013. Incorporating Land-Use Mapping Uncertainty in Remote Sensing Based Calibration of Land-Use Change Models, Proc. of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8th International Symposium on Spatial Data Quality, Hong Kong, China, May 30-June 1, vol. XL-2/W1, pp. 7-12.
  6. Cox, M., A. Flavel, I. Hanson, J. Laver, and R. sling, 2008. The scientific investigation of mass graves: towards protocols and standard operating procedures, Cambridge University Press, New York, NY, USA.
  7. Dandois J.P. and E.C. Ellis, 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision, Remote Sensing of Environment, 136: 259-276. https://doi.org/10.1016/j.rse.2013.04.005
  8. D'Haene, K., S. Sleutel, S. De Neve, D. Gabriels, and G. Hofman, 2009. The effect of reduced tillage agriculture on carbon dynamics in silt loam soils, Nutrient cycling in agroecosystems, 84(3): 249-265. https://doi.org/10.1007/s10705-008-9240-9
  9. Gowda, P.T., S.A. Satyareddi, and S.B. Manjunath, 2013. Crop Growth Modeling: A Review, Journal of Agriculture and Allied Sciences, 2(1): 1-11.
  10. Jame, Y.W. and H.W. Cutforth, 1996. Crop growth models for decision support systems, Canadian Journal of Plant Science, 76(1): 9-19. https://doi.org/10.4141/cjps96-003
  11. Jones P.G. and P.K. Thornton, 2003. The potential impacts of climate change on maize production in Africa and Latin America in 2055, Global environmental change, 13(1): 51-59. https://doi.org/10.1016/S0959-3780(02)00090-0
  12. Junior, J.Z., P.P. Coltri, R.R. do Valle Gonçalves, and L.A.S. Romani, 2015. MULTI-RESOLUTION IN REMOTE SENSING FOR AGRICULTURAL MONITORING: A REVIEW, Revista Brasileira de Cartografia, 3(66/7): 1517-1529.
  13. Kim, K., M. Kang, H. Jeong, and J. Kim, 2013. Comparison of Crop Growth and Evapotranspiration Simulations between Noah Multi Physics Model and CERESRice Model, Korean Journal of Agricultural and Forest Meteorology, 15(4): 282-290 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2013.15.4.282
  14. Kim, J., S. Lim, and Y. Kim, 2014. Global Food Crisis and Korean Countermeasures, Proc. of the 237th Meeting of the Crop Science Society of Japan, Chiba, Japan, Mar. 29-30, vol. 237, pp. 446-447.
  15. Kumhalova, J. and S. Matejkova, 2017. Yield variability prediction by remote sensing sensors with different spatial resolution, International Agrophysics, 31(2): 195-202. https://doi.org/10.1515/intag-2016-0046
  16. Lee, C., 2008. Development and application of model for estimating grain weight and grain N content in rice, Seoul National University, Ph.D thesis, Seoul, South Korea.
  17. Li, Z. and Z. Chen, 2011. Remote sensing indicators for crop growth monitoring at different scales, Proc. of 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, July 24-29, pp. 4062-4065.
  18. Rauff, K.O. and R. Bello, 2015. A review of crop growth simulation models as tools for agricultural meteorology, Agricultural Sciences, 6(9): 1098. https://doi.org/10.4236/as.2015.69105
  19. Sannel, A.B.K. and I.A. Brown, 2010. High-resolution remote sensing identification of thermokarst lake dynamics in a subarctic peat plateau complex, Canadian Journal of Remote Sensing, 36(S1): S26-S40. https://doi.org/10.5589/m10-010
  20. Setiyono, T., A. Nelson, and F. Holecz, 2014. Remote sensing-based crop yield monitoring and forecasting. Proc. of the Expert Meeting on Crop monitoring for improved food security, Vientiane, Lao PDR, Feb. 17, vol. 25, pp. 123-132.
  21. Singh, P.K., K.K. Singh, L.S. Rathore, A.K. Baxla, S.C. Bhan, A. Gupta, G.B. Gohain, R. Balasubramanian, R.S. Singh, and R.K. Mall, 2016. Rice (Oryza sativa L.) yield gap using the CERES-rice model of climate variability for different agroclimatic zones of India, CURRENT SCIENCE, 110(3): 405. https://doi.org/10.18520/cs/v110/i3/405-413
  22. Suwanprasit, C. and N. Srichai, 2012. Impacts of spatial resolution on land cover classification, Proc. of the Asia-Pacific Advanced Network, Chiang Mai, Thailand, Feb. 13-17, vol. 33, pp. 39-47.
  23. Wang, X., C. Zhao, C. Li, L. Liu, W. Huang, and P. Wang, 2008. Use of Ceres-wheat model for wheat yield forecast in Beijing, Proc. of The Second IFIP International Conference on Computer and computing Technologies in Agriculture, Beijing, China, Oct. 18-20, vol. 1, pp. 29-37.
  24. Xie, Y., Z. Sha, and M. Yu, 2008. Remote sensing imagery in vegetation mapping: a review, Journal of plant ecology, 1(1): 9-23. https://doi.org/10.1093/jpe/rtm005

Cited by

  1. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9