References
- Beyer, F., J.T. Jarmer, B. Siegmann, and P. Fischer, 2015. Improved crop classification using multitemporal RapidEye data, Proc. of Analysis of Multitemporal Remote Sensing Images 2015 8th International Workshop, Annecy, France, Jul. 22-24, pp. 1-4.
- Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
- Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2: 121-167. https://doi.org/10.1023/A:1009715923555
- Conrad, C., R.R. Colditz, S. Dech, D. Klein, and P.L. Vlek, 2011. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems, International Journal of Remote Sensing, 32(23): 8763-8778. https://doi.org/10.1080/01431161.2010.550647
- Dawbin, K.W. and J.C. Evans, 1988. Large area crop classification in New South Wales, Australia, using Landsat data, International Journal of Remote Sensing, 9(2): 295-301. https://doi.org/10.1080/01431168808954853
- Hong, S.-Y., J. Hur, J.-B. Ahn, J.-M. Lee, B.-K. Min, C.-K. Lee, Y. Kim, K.D. Lee, S.-H. Kim, G.Y Kim, and K.M. Shim, 2012. Estimating rice yield using MODIS NDVI and meteorological data in Korea, Korean Journal of Remote Sensing, 28(5): 209-520 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.5.4
- Howard, D.M. and B.K. Wylie, 2014. Annual crop type classification of the US Great Plains for 2000 to 2011, Photogrammetric Engineering and Remote Sensing, 80(6): 537-549. https://doi.org/10.14358/PERS.80.6.537-549
- Huang, C., L.S. Davis, and J.R.G. Townshend, 2002. An assessment of support vector machines for land cover classification, International Journal of Remote Sensing, 23(4): 725-749. https://doi.org/10.1080/01431160110040323
- Immitzer, M., C. Atzberger, and T. Koukal, 2012. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data, Remote Sensing, 4(9): 2661-2693. https://doi.org/10.3390/rs4092661
- Jeong, S.J., H.S. Yun, D.U. Kim, H.J. Kim, C.S. Ryu, and Y. Kwon, 2016. Development of crop image segmentation technique for monitoring the growth status of garlic (Allium sativum) in UAV remote sensing, Proc. of 2016 Korean Society for Agricultural Machinery, Cheonan, Nov. 2-3, vol. 21, p. 58 (in Korean).
- Kim, Y.S., K.D. Lee, S.I. Na, S.Y. Hong, N.W. Park, and H.Y. Yoo, 2016. MODIS data-based crop classification using selective hierarchical classification, Korean Journal of Remote Sensing, 32(3): 235-244 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2016.32.3.3
- Lee, K.D., Y.E. Lee, C.W. Park, and S.I. Na, 2016. A comparative study of image classification method to classify onion and garlic using unmanned aerial vehicle(UAV) imagery, Korean Journal of Soil Science and Fertilizer, 49(6): 743-750 (in Korean with English abstract). https://doi.org/10.7745/KJSSF.2016.49.6.743
- Mathur, A. and G.M. Foody, 2008. Crop classification by support vector machine with intelligently selected training data for an operational application, International Journal of Remote Sensing, 29(8): 2227-2240. https://doi.org/10.1080/01431160701395203
- Ministry of Agriculture, Food and Rural Affairs, 2016. Agriculture, Food and Rural Affairs Statistics Yearbook 2016, Director-General for Policy Planning Bureau, Sejong, Korea (in Korean).
- Na, S.I., C.W. Park, Y.K. Cheong, C.S. Kang, I.B. Choi, and K.D. Lee, 2016. Selection of optimal vegetation indices for estimation of barley & wheat growth based on remote sensing - An application of unmanned aerial vehicle and field investigation data -, Korean Journal of Remote Sensing, 32(5): 483-497 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2016.32.5.7
- National Agricultural Products Quality Management Service, 2005. An Illustrated Crop Guide, Dongyang P&C, Anyang, Korea (in Korean).
- Pal, M., 2005. Random forest classifier for remote sensing classification, International Journal of Remote Sensing, 26(1): 217-222. https://doi.org/10.1080/01431160412331269698
- Park, J. and S. Jang, 2014. The research of building smart farm map for vitalizing agricultural remote sensing, Proc. of Korean Society of Remote Sensing Fall conference 2014, Jeju, Oct. 16-17, vol. 17, pp. 23-26 (in Korean).
- Park, J., J. Yun, and J. Park, 2015. Classification of garlic and onion using UAV imagery, Proc. of Korean Society of Remote Sensing Fall conference 2015, Gwangju, Oct. 15-16, vol. 18, pp. 152-155 (in Korean).
- Park, W.M., 2007. Encyclopedia for vegetable garden, Dylnyouk, Gyeonggi, Korea (in Korean).
- Shao, Y., R.S. Lunetta, J. Ediriwickrema, and J. Iiames, 2010. Mapping cropland and major crop types across the Great Lakes Basin using MODISNDVI data, Photogrammetric Engineering and Remote Sensing, 76(1): 73-84. https://doi.org/10.14358/PERS.76.1.73
- Yeom, J.H. and Y.I. Kim, 2014. Automatic extraction of the land readjustment paddy for high-level land cover classification, Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(5): 443-450 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2014.32.5.443
- Yoon, S.-H., J.-Y. Choi, S.-H. Yoo, and M.-W. Jang, 2007. An uncertainty analysis of topographical factors in paddy field classification using a timeseries MODIS, Journal of Korean Society of Agricultural Engineers, 49(5): 67-77 (in Korean with English abstract). https://doi.org/10.5389/KSAE.2007.49.5.067
Cited by
- Potential of Hybrid CNN-RF Model for Early Crop Mapping with Limited Input Data vol.13, pp.9, 2017, https://doi.org/10.3390/rs13091629
- U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 - vol.37, pp.3, 2017, https://doi.org/10.7780/kjrs.2021.37.3.4