DOI QR코드

DOI QR Code

The electrical and heating properties of copper-incorporated graphite fibers fabricated using different ultrasonication techniques

  • Lee, Kyeong Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Min-Ji (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jo, Hanjoo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Yeo, Sang Young (Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2017.03.11
  • Accepted : 2017.07.04
  • Published : 2017.10.31

Abstract

Keywords

References

  1. Tang P, Zhang R, Shi R, Bin Y. Synergetic effects of carbon nanotubes and carbon fibers on electrical and self-heating properties of high-density polyethylene composites. J Mater Sci, 50, 1565 (2015). https://doi.org/10.1007/s10853-014-8716-z.
  2. Fosbury A, Wang S, Pin YF, Chung DDL. The interlaminar interface of a carbon fiber polymer-matrix composite as a resistance heating element. Compos Part A Appl Sci Manuf, 34, 933 (2003). https://doi.org/10.1016/S1359-835X(03)00208-2.
  3. Kim GM, Yang BJ, Ryu GU, Lee HK. The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction. Compos Struct, 158, 20 (2016). https://doi.org/10.1016/j.compstruct.2016.09.014.
  4. He Y, Yang R, Zhang H, Zhou D, Wang G. Volume or inside heating thermography using electromagnetic excitation for advanced composite materials. Int J Therm Sci, 111, 41 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.08.007.
  5. Park MS, Ko Y, Jung MJ, Lee YS. Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties. Carbon Lett, 16, 121 (2015). https://doi.org/10.5714/CL.2015.16.2.121.
  6. Yang J, Nakabayashi K, Miyawaki J, Yoon SH. Preparation of isotropic pitch-based carbon fiber using hyper coal through cocarbonation with ethylene bottom oil. J Ind Eng Chem, 34, 397 (2016). https://doi.org/10.1016/j.jiec.2015.11.026.
  7. Yu X, Han X, Zhao Z, Zhang J, Guo W, Pan C, Li A, Liu H, Wang ZL. Hierarchical $TiO_2$ nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: a highly efficient photoelectrocatalytic device entirely based on renewable energy. Nano Energy, 11, 19 (2015). https://doi.org/10.1016/j.nanoen.2014.09.024.
  8. Xu C, Liu G, Chen H, Zhou R, Liu Y. Fabrication of conductive copper-coated glass fibers through electroless plating process. J Mater Sci Mater Electron, 25, 2611 (2014). https://doi.org/10.1007/s10854-014-1919-x.
  9. Katwal R, Kaur H, Sharma G, Naushad M, Pathania D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem, 31, 173 (2015). https://doi.org/10.1016/j.jiec.2015.06.021.
  10. Kim JH, Kim KH, Park MS, Bae TS, Lee YS. Cu nanoparticleembedded carbon foams with improved compressive strength and thermal conductivity. Carbon Lett, 17, 65 (2016). https://doi.org/10.5714/CL.2016.17.1.065.
  11. Yuan E, Zhang K, Lu G, Mo Z, Tang Z. Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of $NO_x$ with $NH_3$. J Ind Eng Chem, 42, 142 (2016). https://doi.org/10.1016/j.jiec.2016.07.030.
  12. Ruan B, Jacobi AM. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett, 7, 127 (2012). https://doi.org/10.1186/1556-276X-7-127.
  13. Festag G, Steinbruck A, Csaki A, Moller R, Fritzsche W. Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth. Nanotechnology, 18, 015502 (2006). https://doi.org/10.1088/0957-4484/18/1/015502.
  14. Chong SP, Ee YC, Chen Z, Law SB. Electroless copper seed layer deposition on tantalum nitride barrier film. Surf Coat Technol, 198, 287 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.086.
  15. Ghani SA, Hassan RH, Yaseen ST. The preparation, characterization, and catalytic activity of synthetic activated carbon supported cupric chloride in oxidation of iraqi naphtha. Energy Sources Part A Recovery Util Environ Eff, 34, 1471 (2012). http://dx.doi.org/10.1080/15567036.2011.608775.
  16. Schrage C, Kaskel S. Flexible and transparent SWCNT electrodes for alternating current electroluminescence devices. ACS Appl Mater Interface, 8, 1640 (2009). https://doi.org/10.1021/am9002588.
  17. Liao YH, Marietta-Tondin O, Liang Z, Zhang C, Wang B. Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A, 385, 175 (2004). https://doi.org/10.1016/j.msea.2004.06.031.
  18. Choi CH, Park SH, Woo SI. N-doped carbon prepared by pyrolysis of dicyandiamide with various $MeCl_2{\cdot}xH_2O$ (Me = Co, Fe, and Ni) composites: effect of type and amount of metal seed on oxygen reduction reactions. Appl Catal B Environ, 119-120, 123 (2012). https://doi.org/10.1016/j.apcatb.2012.02.031.
  19. Sahiiner N, Sagbas S. The use of poly(vinyl phosphonic acid) microgels for the preparation of inherently magnetic Co metal catalyst particles in hydrogen production. J Power Sources, 246, 55 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.043.
  20. Chien AT, Cho S, Joshi Y, Kumar S. Electrical conductivity and joule heating of polyacrylonitrile/carbon nanotube composite fibers. Polymer, 55, 6896 (2014). https://doi.org/10.1016/j.polymer.2014.10.064.
  21. Zhang D, Ye L, Deng S, Zhang J, Tang Y, Chen Y. CF/EP composite laminates with carbon black and copper chloride for improved electrical conductivity and interlaminar fracture toughness. Compos Sci Technol, 72, 412 (2012). https://doi.org/10.1016/j.compscitech.2011.12.002.