References
- Accornero, F., Lacidogna, G. and Carpinteri, A. (2016), "Evolutionary fracture analysis of masonry arches:Effects of shallowness ratio and size scale", Compt. Rend. Mecan., 344(9), 623-630. https://doi.org/10.1016/j.crme.2016.05.002
- Armstrong, D.M., Sibbald, A., Fairfield, C.A. and Forde, M.C. (1995), "Modal analysis for masonry arch bridge spandrell wall separation identification", NDT E Int., 28(6), 377-386. https://doi.org/10.1016/0963-8695(95)00048-8
- Ataei, S., Jahangiri Alikamar, M. and Kazemiashtiani, V. (2016), "Evaluation of axle load increasing on a monumental masonry arch bridge based on field load testing", Constr. Build. Mater., 116, 413-421. https://doi.org/10.1016/j.conbuildmat.2016.04.126
- Bayraktar, A., Altuniik, A.C., Birinci, F., Sevim, B. and Turker, T. (2010), "Finite-element analysis and vibration testing of a two-span masonry arch bridge", J. Perform. Constr. Facilit., 24(1), 46-52. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000060
- Bayraktar, A., Turker, T. and Altunisik, A.C. (2015), "Experimental frequencies and damping ratios for historical masonry arch bridges", Constr. Build. Mater., 75, 234-241. https://doi.org/10.1016/j.conbuildmat.2014.10.044
- Betti, M., Drosopoulos, G.A. and Stavroulakis, G.E. (2008), "Two non-linear finite element models developed for the assessment of failure of masonry arches", Compt. Rend. Mecan., 336(1), 42-53. https://doi.org/10.1016/j.crme.2007.10.014
- Brencich, A. and De Francesco, U. (2004), "Assessment of multispan masonry arch bridges. I: Simplified approach", J. Brid. Eng., 9(6), 582-590. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:6(582)
- Brencich, A. and De Francesco, U. (2004), "Assessment of multispan masonry arch bridges. II: Examples and applications", J. Brid. Eng., 9(6), 591-598. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:6(591)
- Brencich, A. and Sabia, D. (2008), "Experimental identification of a multi-span masonry bridge: The tanaro bridge", Constr. Build. Mater., 22(10), 2087-2099. https://doi.org/10.1016/j.conbuildmat.2007.07.031
- Carpinteri, A., Lacidogna, G. and Accornero, F. (2015), "Evolution of the fracturing process in masonry arches", J. Struct. Eng., 141(5).
- Cavicchi, A. and Gambarotta, L. (2005), "Collapse analysis of masonry bridges taking into account arch-fill interaction", Eng. Struct., 27(4), 605-615. https://doi.org/10.1016/j.engstruct.2004.12.002
- Cocchetti, G., Colasante, G. and Rizzi, E. (2012), "On the analysis of minimum thickness in circular masonry arches", Appl. Mech. Rev., 64(5), 050802-050802-050827. https://doi.org/10.1115/1.4007417
- Costa, C., Arede, A., Costa, A., Caetano, E., Cunha, A. and Magalhaes, F. (2015), "Updating numerical models of masonry arch bridges by operational modal analysis", J. Architect. Herit., 9(7), 760-774. https://doi.org/10.1080/15583058.2013.850557
- Crisfield, M.A. and Packam, A.J. (1985), A Mechanism Program for Computing the Strength of Masonry Arch Bridges, Transport Research Laboratory, Research Report 124, Crowthorne, U.K.
- De Arteaga, I. and Morer, P. (2012), "The effect of geometry on the structural capacity of masonry arch bridges", Constr. Build. Mater., 34, 97-106. https://doi.org/10.1016/j.conbuildmat.2012.02.037
- Drosopoulos, G.A., Stavroulakis, G.E. and Massalas, C.V. (2007), "FRP reinforcement of stone arch bridges: Unilateral contact models and limit analysis", Compos. Part B: Eng., 38(2), 144-151. https://doi.org/10.1016/j.compositesb.2006.08.004
- Fanning, P.J. and Boothby, T.E. (2001), "Three-dimensional modelling and full-scale testing of stone arch bridges", Comput. Struct., 79(29-30), 2645-2662. https://doi.org/10.1016/S0045-7949(01)00109-2
- Fanning, P.J., Boothby, T.E. and Roberts, B.J. (2001), "Longitudinal and transverse effects in masonry arch assessment", Constr. Build. Mater., 15(1), 51-60. https://doi.org/10.1016/S0950-0618(00)00069-6
- Fryba, L. (1996), Dynamics of Railway Bridges, Thomas Telford, Dunfermline, U.K.
- Kishen, J.M.C., Ramaswamy, A. and Manohar, C.S. (2013), "Safety assessment of a masonry arch bridge: Field testing and simulations", J. Brid. Eng., 18(2), 162-171. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000338
- Marefat, M.S., Ghahremani-Gargary, E. and Ataei, S. (2004), "Load test of a plain concrete arch railway bridge of 20-m span", Constr. Build. Mater., 18(9), 661-667. https://doi.org/10.1016/j.conbuildmat.2004.04.025
- Marefat, M.S., Yazdani, M. and Jafari, M. (2017), "Seismic assessment of small to medium spans plain concrete arch bridges", Eur. J. Environ. Civil Eng., 1-22.
- Melbourne, C. and Gilbert, M. (1995), "Behaviour of multiring brickwork arch bridges", Struct. Eng. Lond., 73(3), 39-47.
- Melbourne, C. and Walker, P. (1996), "Load tests to collapse of model brickworck masonry arches", Proceedings of the 8th International Brick and Block Masonry Conference, 2, 991-1002.
- Ministry of Roads and Transportation (2008), Road and Railway Bridges Seismic Resistant Design Code (No. 463), Iran.
- Page, J. (1993), Masonry Arch Bridges, TRL State of the Art Review, HMSO, London, U.K.
- Pela, L., Aprile, A. and Benedetti, A. (2009), "Seismic assessment of masonry arch bridges", Eng. Struct., 31(8), 1777-1788. https://doi.org/10.1016/j.engstruct.2009.02.012
- Royles, R. and Hendry, A.W. (1992), "Model tests on masonry arches", Proc. Inst. Civ. Eng. Bldg., 299-321.
- Srinivas, V., Sasmal, S., Ramanjaneyulu, K. and Ravisankar, K. (2014), "Performance evaluation of a stone masonry-arch railway bridge under increased axle loads", J. Perform. Constr. Facilit., 28(2), 363-375. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000407
- Wang, J. and Melbourne, C. (2010), "Mechanics of MEXE method for masonry arch bridge assessment", Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 163(3), 187-202. https://doi.org/10.1680/eacm.2010.163.3.187
- Yazdani, M. and Marefat, M.S. (2014), "Assessment of dynamic train load on response of plain concrete arch bridges in frequency domain", J. Acoust. Vibr., 3(6), 43-50.
Cited by
- Three-dimensional modelling for seismic assessment of plain concrete arch bridges vol.171, pp.3, 2017, https://doi.org/10.1680/jcien.17.00048
- Temperature Load Parameters and Thermal Effects of a Long-Span Concrete-Filled Steel Tube Arch Bridge in Tibet vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/9710613