DOI QR코드

DOI QR Code

ALTERNATING RESOLVENT ALGORITHMS FOR FINDING A COMMON ZERO OF TWO ACCRETIVE OPERATORS IN BANACH SPACES

  • Kim, Jong Kyu (Department of Mathematics Education Kyungnam University) ;
  • Truong, Minh Tuyen (Department of Mathematics and Informatics Thainguyen University)
  • 투고 : 2016.12.01
  • 심사 : 2017.03.30
  • 발행 : 2017.11.01

초록

In this paper we introduce a new iterative method by the combination of the prox-Tikhonov regularization and the alternating resolvents for finding a common zero of two accretive operators in Banach spaces. And we will give some applications and numerical examples. The results of this paper improve and extend the corresponding results announced by many others.

키워드

참고문헌

  1. R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, 2009.
  2. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff, Leyden, 1976.
  3. H. H. Bauschke, P. L. Combettes, and S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear Anal. 60 (2005), no. 2, 283-301. https://doi.org/10.1016/j.na.2004.07.054
  4. H. H. Bauschke, E. Matouskova and S. Reich, Projection and proximal point methods convergence results and counterexamples, Nonlinear Anal. 56 (2004), no. 5, 715-738. https://doi.org/10.1016/j.na.2003.10.010
  5. L. M. Bregman, The method of successive projection for finding a common point of convex sets, Sov. Math. Dokl. 6 (1965), 688-692.
  6. I. Cioranescu, Geometry of Banach Spaces, "Duality Mappings and Nonlinear Problems", Kluwer Academic Publishers, Dordrecht, 1990.
  7. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
  8. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
  9. A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc. 70 (1964), 709-710. https://doi.org/10.1090/S0002-9904-1964-11178-2
  10. G. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403-419. https://doi.org/10.1137/0329022
  11. H. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004), no. 1, 35-61. https://doi.org/10.1016/j.na.2003.11.004
  12. J. S. Jung, Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces, Nonlinear Anal. Appl. 64 (2006), no. 11, 2536-2552. https://doi.org/10.1016/j.na.2005.08.032
  13. J. S. Jung, Iterative methods for pseudocontractive mappings in Banach spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 643602, 7 pages.
  14. J. K. Kim and N. Buong, Convergence rates in regularization for a system of nonlinear ill-posed equations with m-accretive operators, J. Inequal. Appl. 2014 (2014), no. 440, 9 pages.
  15. J. K. Kim and T. M. Tuyen, Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2011 (2011), no. 52, 10 pages.
  16. N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optim. 37 (1996), no. 3, 239-252. https://doi.org/10.1080/02331939608844217
  17. E. S. Levitin and B. T. Polyak, Constrained Minimization Method, USSR Comput. Math. Math. Phys. 6 (1966), 1-50.
  18. B. Martinet, Regularisation d'inequations variationnelles par approximations successives, (French) Rev. Francaise Informat. Recherche Operationnalle 4 (1970), Ser. R-3, 154-158.
  19. J. von Neumann, Functional Operators. II. The Geometry of Orthogonal Space, Annals of Mathematics Studies, no. 22. Princeton University Press, Princeton, N. J., 1950.
  20. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  21. W. V. Petryshn, A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal. 6 (1970), 282-291. https://doi.org/10.1016/0022-1236(70)90061-3
  22. R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510. https://doi.org/10.2140/pjm.1966.17.497
  23. R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88. https://doi.org/10.1090/S0002-9947-1970-0282272-5
  24. R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877-898. https://doi.org/10.1137/0314056
  25. D. R. Sahu and J. C. Yao, The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces, J. Global Optim. 51 (2011), no. 4, 641-655. https://doi.org/10.1007/s10898-011-9647-8
  26. Y. Song and C. Yang, A note on a paper: A regularization method for the proximal point algorithm, J. Global Optim. 43 (2009), no. 1, 171-174. https://doi.org/10.1007/s10898-008-9279-9
  27. S. Takahashi, W. Takahashi, and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), no. 1, 27-41. https://doi.org/10.1007/s10957-010-9713-2
  28. T. M. Tuyen, A regularization proximal point algorithm for zeros of accretive operators in Banach spaces, Afr. Diaspora J. Math. 13 (2012), no. 2, 62-73.
  29. T. M. Tuyen, Strong convergence theorem for a common zero of maccretive mappings in Banach spaces by viscosity approximation methods, Nonl. Func. Anal. Appl. 17 (2012), no. 2, 187-197.
  30. N. C. Wong, D. R. Sahu, and J. C. Yao, Solving variational inequalities involving nonexpansive type mappings, Nonlinear Anal. 69 (2008), no. 12, 4732-4753. https://doi.org/10.1016/j.na.2007.11.025
  31. H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36 (2006), no. 1, 115-125. https://doi.org/10.1007/s10898-006-9002-7
  32. H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082