References
- Ait-Si-Ali, S., Guasconi, V., Fritsch, L., Yahi, H., Sekhri, R., Naguibneva, I., Robin, P., Cabon, F., Polesskaya, A., and Harel-Bellan, A. (2004). A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23, 605-615. https://doi.org/10.1038/sj.emboj.7600074
- Berendse, M., Grounds, M.D., and Lloyd, C.M. (2003). Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp. Cell Res. 291, 435-450. https://doi.org/10.1016/j.yexcr.2003.07.004
- Bergstrom, D.A., Penn, B.H., Strand, A., Perry, R.L., Rudnicki, M.A., and Tapscott, S.J. (2002). Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell. 9, 587-600. https://doi.org/10.1016/S1097-2765(02)00481-1
- Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E., and Arnold, H.H. (1989). A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8, 701-709.
- Braun, T., Bober, E., Winter, B., Rosenthal, N., and Arnold, H.H. (1990). Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 9, 821-831.
- Buchberger, A., Ragge, K., and Arnold, H.H. (1994). The myogenin gene is activated during myocyte differentiation by pre-existing, not newly synthesized transcription factor MEF-2. J. Biol. Chem. 269, 17289-17296.
- Burattini, S., Ferri, P., Battistelli, M., Curci, R., Luchetti, F., and Falcieri, E. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur. J. Histochem. 48, 223-233.
- Caretti, G., Di Padova, M., Micales, B., Lyons, G.E., and Sartorelli, V. (2004). The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18, 2627-2638. https://doi.org/10.1101/gad.1241904
- Davis, R.L., Weintraub, H., and Lassar, A.B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000. https://doi.org/10.1016/0092-8674(87)90585-X
- De la Serna, I.L., Ohkawa, Y., and Imbalzano, A.N. (2006). Chromatin remodelling in mammalian differentiation: lessons from ATPdependent remodellers. Nat. Rev. Genet. 7, 461-473. https://doi.org/10.1038/nrg1882
- DeFronzo, R.A., and Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32, S157-S163. https://doi.org/10.2337/dc09-S302
- Dodou, E., Xu, S.M., and Black, B.L. (2003). Mef2c is activated directly by myogenicbasic helix-loop-helix proteins during skeletal muscle development in vivo. Mech. Dev. 120, 1021-1032. https://doi.org/10.1016/S0925-4773(03)00178-3
- Edmondson, D.G., and Olson, E.N. (1989). A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3, 628-640. https://doi.org/10.1101/gad.3.5.628
- Faralli, H., and Dilworth, F.J. (2012). Turning on myogenin in muscle: a paradigm for understanding mechanisms of tissue-specific gene expression. Comp. Funct. Genomics 2012, 836374.
- Fu, X., Zhao, J.X., Liang, J., Zhu, M.J., Foretz, M., Viollet, B., and Du, M. (2013). AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. Am. J. Physiol. Cell Physiol. 305, C887-C895. https://doi.org/10.1152/ajpcell.00124.2013
- Gao, L., Cueto, M.A., Asselbergs, F., and Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277, 25748-25755. https://doi.org/10.1074/jbc.M111871200
- Gerber, A.N., Klesert, T.R., Bergstrom, D.A. and Tapscott, S.J. (1997). Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev. 11, 436-450. https://doi.org/10.1101/gad.11.4.436
- Gossett, L.A., Kelvin, D.J., Sternberg, E.A., and Olson, E.N. (1989). A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9, 5022-5033. https://doi.org/10.1128/MCB.9.11.5022
- Guasconi, V., and Puri, P.L. (2009). Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration. Trends Cell Biol. 19, 286-294. https://doi.org/10.1016/j.tcb.2009.03.002
- Haberland, M., Montgomery, R.L., and Olson, E.N. (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32-42. https://doi.org/10.1038/nrg2485
- Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N., and Klein, W.H. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501-506. https://doi.org/10.1038/364501a0
- Iezzi, S., Di Padova, M., Serra, C., Caretti, G., Simone, C., Maklan, E., Minetti, G., Zhao, P., Hoffman, E.P., Puri, P.L., et al. (2004). Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev. Cell 6, 673-684. https://doi.org/10.1016/S1534-5807(04)00107-8
- Karmodiya, K., Krebs, A.R., Oulad-Abdelghani, M., Kimura, H., and Tora, L. (2012). H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13, 424. https://doi.org/10.1186/1471-2164-13-424
- Krishnan, M., Singh, A.B., Smith, J.J., Sharma, A., Chen, X., Eschrich, S., Yeatman, T.J., Beauchamp, R.D., and Dhawan, P. (2010). HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability. Oncogene 29, 305-312. https://doi.org/10.1038/onc.2009.324
- Lassar, A.B., Skapek, S.X., and Novitch, B. (1994). Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell Biol. 6, 788-794. https://doi.org/10.1016/0955-0674(94)90046-9
- Lee, D.S., Choi, H., Han, B.S., Kim, W.K., Lee, S.C., Oh, K-J., and Bae, K-H. (2016). c-Jun regulates adipocyte differentiation via the KLF15- mediated mode. Biochem. Biophys. Res. Commun. 469, 552-558. https://doi.org/10.1016/j.bbrc.2015.12.035
- Liu, H., Hu, Q., D'Ercole, J., and Ye, P. (2009). Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia 57, 1-12. https://doi.org/10.1002/glia.20729
- Lu, J., McKinsey, T.A., Zhang, C.L., and Olson, E.N. (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233-244. https://doi.org/10.1016/S1097-2765(00)00025-3
- Mal, A.K. (2006). Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. EMBO J. 25, 3323-3334. https://doi.org/10.1038/sj.emboj.7601229
- Mal, A., and Harter, M.L. (2003). MyoD is functionally linked to the silencing of a muscle -specific regulatory gene prior to skeletal myogenesis. Proc. Natl. Acad. Sci. USA. 100, 1735-1739. https://doi.org/10.1073/pnas.0437843100
- Mal, A., Sturniolo, M., Schiltz, R.L., Ghosh, M.K., and Harter, M.L. (2001). A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 20, 1739-1753. https://doi.org/10.1093/emboj/20.7.1739
- Martin, J.F., Schwarz, J.J., and Olson, E.N. (1993). Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc. Natl. Acad. Sci. USA. 90, 5282-5286. https://doi.org/10.1073/pnas.90.11.5282
- McDermott, J.C., Cardoso, M.C., Yu, Y.T., Andres, V., Leifer, D., Krainc, D., Lipton, S.A., and Nadal-Ginard, B. (1993). hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol. Cell. Biol. 13, 2564-2577. https://doi.org/10.1128/MCB.13.4.2564
- McKinsey, T.A., Zhang, C.L., and Olson, E.N. (2002). Signaling chromatin to make muscle. Curr. Opin. Cell Biol. 14, 763-772. https://doi.org/10.1016/S0955-0674(02)00389-7
- Molkentin, J.D., Black, B.L., Martin, J.F., and Olson, E.N. (1995). Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125-1136. https://doi.org/10.1016/0092-8674(95)90139-6
- Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I., and Nabeshima, Y. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532-535. https://doi.org/10.1038/364532a0
- Oh, K.J., Park, J., Kim, S.S., Oh, H., Choi, C.S., Koo, S.H. (2012). TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver. PLOS Genet. 8, e1002986. https://doi.org/10.1371/journal.pgen.1002986
- Olson, E.N., and Klein, W.H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8, 1-8. https://doi.org/10.1101/gad.8.1.1
- Olson, E.N., Perry, M., and Schulz, R.A. (1995). Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev. Biol. 172, 2-14. https://doi.org/10.1006/dbio.1995.0002
- Pasini, D., Hansen, K.H., Christensen, J., Agger, K., Cloos, P.A., and Helin, K. (2008). Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive complex 2. Genes Dev. 22, 1345-1355. https://doi.org/10.1101/gad.470008
- Pollock, R., and Treisman, R. (1991). Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5, 2327-2341. https://doi.org/10.1101/gad.5.12a.2327
- Puri, P.L., and Sartorelli, V. (2000). Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J. Cell. Physiol. 185, 155-173. https://doi.org/10.1002/1097-4652(200011)185:2<155::AID-JCP1>3.0.CO;2-Z
- Rajendran, P., Williams, D.E., Ho, E., and Dashwood, R.H. (2011). Metabolism as a key to histone deacetylase inhibition. Crit. Rev. Biochem. Mol. Biol. 46, 181-199. https://doi.org/10.3109/10409238.2011.557713
- Rhodes, S.J., and Konieczny, S.F. (1989). Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3, 2050-2061. https://doi.org/10.1101/gad.3.12b.2050
- Rudnicki, M.A., Braun, T., Hinuma, S., and Jaenisch, R. (1992). Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71, 383-390. https://doi.org/10.1016/0092-8674(92)90508-A
- Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H. and Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351-1359. https://doi.org/10.1016/0092-8674(93)90621-V
- Sabourin, L.A., and Rudnicki, M.A. (2000). The molecular regulation of myogenesis. Clin. Genet. 57, 16-25.
- Srivastava, S., Bhowmick, K., Chatterjee, S., Basha, J., Kundu, T.K., and Dhar, S.K. (2014). Histone H3K9 acetylation level modulates gene expression and may affect parasite growth in human malaria parasite Plasmodium falciparum. FEBS J. 281, 5265-5278. https://doi.org/10.1111/febs.13067
- Thangapandian, S., John, S., Lee, Y., Kim, S., and Lee, K.W. (2011). Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery. Int. J. Mol. Sci. 12, 9440-9462. https://doi.org/10.3390/ijms12129440
- Thangapandian, S., John, S., and Lee, K.W. (2012). Molecular dynamics simulation study explaining inhibitor selectivity in different class of histone deacetylases. J. Biomol. Struct. Dyn. 29, 677-698. https://doi.org/10.1080/07391102.2012.10507409
- Voelter-Mahlknecht, S., Ho, A.D., and Mahlknecht, U. (2005). Chromosomal organization and localization of the novel class IV human histone deacetylase 11 gene. Int. J. Mol. Med. 16, 589-598.
- Wang, D.Z., Valdez, M.R., McAnally, J., Richardson, J., and Olson, E.N. (2001). The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128, 4623-4633.
- Weintraub, H., Davis, R., Lockshon, D., and Lassar, A. (1990). MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc. Natl. Acad. Sci. USA 87, 5623-5627. https://doi.org/10.1073/pnas.87.15.5623
- Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T.K., Turner, D., Rupp, R., Hollenberg, S., et al. (1991). The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761-766. https://doi.org/10.1126/science.1846704
- Xu, Q., and Wu Z. (2000). The insulin-like growth factorphosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcomaderived RD cells. J. Biol. Chem. 275, 36750-36757. https://doi.org/10.1074/jbc.M005030200
- Yu, Y.T., Breitbart, R.E., Smoot, L.B., Lee, Y., Mahdavi, V., and Nadal- Ginard, B. (1992). Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6, 1783-1798. https://doi.org/10.1101/gad.6.9.1783
Cited by
- Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model vol.1, pp.5, 2017, https://doi.org/10.26508/lsa.201800039
- Differences in the fast muscle methylome provide insight into sex-specific epigenetic regulation of growth in Nile tilapia during early stages of domestication vol.14, pp.8, 2017, https://doi.org/10.1080/15592294.2019.1618164
- Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes vol.10, pp.11, 2019, https://doi.org/10.1038/s41419-019-2061-8
- Cigarette smoke extract modulates Pseudomonas aeruginosa bacterial load via USP25/HDAC11 axis in lung epithelial cells vol.318, pp.2, 2017, https://doi.org/10.1152/ajplung.00142.2019
- Impact of intracellular toxic advanced glycation end-products (TAGE) on murine myoblast cell death vol.12, pp.None, 2017, https://doi.org/10.1186/s13098-020-00561-z
- Loss of HDAC11 accelerates skeletal muscle regeneration in mice vol.288, pp.4, 2017, https://doi.org/10.1111/febs.15468
- Increased Histone Acetylation and Decreased Expression of Specific Histone Deacetylases in Ultraviolet-Irradiated and Intrinsically Aged Human Skin In Vivo vol.22, pp.4, 2017, https://doi.org/10.3390/ijms22042032
- HDAC11 Regulates Glycolysis through the LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness vol.81, pp.8, 2017, https://doi.org/10.1158/0008-5472.can-20-3044
- Recent developments of HDAC inhibitors: Emerging indications and novel molecules vol.87, pp.12, 2017, https://doi.org/10.1111/bcp.14889