DOI QR코드

DOI QR Code

Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease

  • Jeong, Sangyun (Department of Molecular Biology, Chonbuk National University)
  • Received : 2017.06.06
  • Accepted : 2017.08.16
  • Published : 2017.09.30

Abstract

The most common form of senile dementia is Alzheimer's disease (AD), which is characterized by the extracellular deposition of amyloid ${\beta}-peptide$ ($A{\beta}$) plaques and the intracellular formation of neurofibrillary tangles (NFTs) in the cerebral cortex. Tau abnormalities are commonly observed in many neurodegenerative diseases including AD, Parkinson's disease, and Pick's disease. Interestingly, tau-mediated formation of NFTs in AD brains shows better correlation with cognitive impairment than $A{\beta}$ plaque accumulation; pathological tau alone is sufficient to elicit frontotemporal dementia, but it does not cause AD. A growing amount of evidence suggests that soluble $A{\beta}$ oligomers in concert with hyperphosphorylated tau (pTau) serve as the major pathogenic drivers of neurodegeneration in AD. Increased $A{\beta}$ oligomers trigger neuronal dysfunction and network alternations in learning and memory circuitry prior to clinical onset of AD, leading to cognitive decline. Furthermore, accumulated damage to mitochondria in the course of aging, which is the best-known nongenetic risk factor for AD, may collaborate with soluble $A{\beta}$ and pTau to induce synapse loss and cognitive impairment in AD. In this review, I summarize and discuss the current knowledge of the molecular and cellular biology of AD and also the mechanisms that underlie $A{\beta}-mediated$ neurodegeneration.

Keywords

References

  1. Arendt, T. (2009). Synaptic degeneration in Alzheimer's disease. Acta Neuropathol. 118, 167-179. https://doi.org/10.1007/s00401-009-0536-x
  2. Bai, X.C., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S.H., and Shi, Y. (2015). An atomic structure of human ${\gamma}$-secretase. Nature 525, 212-217. https://doi.org/10.1038/nature14892
  3. Ballatore, C., Lee, V.M., and Trojanowski, J.Q. (2007). Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci. 8, 663-672.
  4. Bartus, R.T., Dean, R.L. 3rd, Beer, B., and Lippa, A.S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408-414. https://doi.org/10.1126/science.7046051
  5. Bateman, R.J., Aisen, P.S., De Strooper, B., Fox, N.C., Lemere, C.A., Ringman, J.M., Salloway, S., Sperling, R.A., Windisch, M., and Xiong, C. (2011). Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimers Res. Ther. 3, 1.
  6. Bu, G. (2009). Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333-344. https://doi.org/10.1038/nrn2620
  7. Brown, M.S., Ye, J., Rawson, R.B., and Goldstein, J.L. (2000). Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391-398. https://doi.org/10.1016/S0092-8674(00)80675-3
  8. Cai, H., Wang, Y., McCarthy, D., Wen, H., Borchelt, D.R., Price, D.L., and Wong, P.C. (2001). BACE1 is the major ${\beta}$-secretase for generation of $A{\beta}$ peptides by neurons. Nat. Neurosci. 4, 233-234. https://doi.org/10.1038/85064
  9. Canter, R.G., Penney, J., and Tsai L.H. (2016). The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 539, 187-196. https://doi.org/10.1038/nature20412
  10. Chasseigneaux, S., and Allinquant, B. (2012). Functions of $A{\beta}$, $sAPP{\alpha}$ and $sAPP{\beta}$ : similarities and differences. J. Neurochem. 120, 99-108. https://doi.org/10.1111/j.1471-4159.2011.07584.x
  11. Chen, Q.S., Kagan, B.L., Hirakura, Y., and Xie, C.W. (2000). Impairment of hippocampal long-term potentiation by Alzheimer amyloid ${\beta}$-peptides. J. Neurosci. Res. 60, 65-72. https://doi.org/10.1002/(SICI)1097-4547(20000401)60:1<65::AID-JNR7>3.0.CO;2-Q
  12. Chen, F., Hasegawa, H., Schmitt-Ulms, G., Kawarai, T., Bohm, C., Katayama, T., Gu, Y., Sanjo, N., Glista, M., Rogaeva, E., et al. (2006). TMP21 is a presenilin complex component that modulates ${\gamma}$- secretase but not ${\varepsilon}$-secretase activity. Nature 440, 1208-1212. https://doi.org/10.1038/nature04667
  13. Cho, D.H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., and Lipton, S.A. (2009). S-nitrosylation of Drp1 mediates ${\beta}$-amyloidrelated mitochondrial fission and neuronal injury. Science 324, 102-105. https://doi.org/10.1126/science.1171091
  14. Cleary, J.P., Walsh, D.M., Hofmeister, J.J., Shankar, G.M., Kuskowski, M.A., Selkoe, D.J., and Ashe, K.H. (2005). Natural oligomers of the amyloid-${\beta}$ protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79-84. https://doi.org/10.1038/nn1372
  15. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak- Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923. https://doi.org/10.1126/science.8346443
  16. Cullen, W.K., Suh, Y.H., Anwyl, R., and Rowan, M.J. (1997). Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport 8, 3213-3217. https://doi.org/10.1097/00001756-199710200-00006
  17. DeKosky, S.T., and Scheff, S.W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 27, 457-464. https://doi.org/10.1002/ana.410270502
  18. De Strooper, B. (2003). Aph-1, Pen-2, and Nicastrin with Presenilin generate an active ${\gamma}$-Secretase complex. Neuron 38, 9-12. https://doi.org/10.1016/S0896-6273(03)00205-8
  19. De Strooper, B. (2007). Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 8, 141-146. https://doi.org/10.1038/sj.embor.7400897
  20. De Strooper, B., and Karran, E. (2016). The Cellular phase of Alzheimer's disease. Cell 164, 603-615. https://doi.org/10.1016/j.cell.2015.12.056
  21. Dineley, K.T., Bell, K.A., Bui, D., and Sweatt, J.D. (2002). ${\beta}$-Amyloid peptide activates ${\alpha}7$ nicotinic acetylcholine receptors expressed in Xenopus oocytes. J. Biol. Chem. 277, 25056-25061. https://doi.org/10.1074/jbc.M200066200
  22. Esler, W.P., and Wolfe, M.S. (2001). A portrait of Alzheimer secretases--new features and familiar faces. Science 293, 1449-1454. https://doi.org/10.1126/science.1064638
  23. Figueiredo, C.P., Clarke, J.R., Ledo, J.H., Ribeiro, F.C., Costa, C.V., Melo, H.M., Mota-Sales, A.P., Saraiva, L.M., Klein, W.L., Sebollela, A., et al. (2013). Memantine rescues transient cognitive impairment caused by high-molecular-weight $a{\beta}$ oligomers but not the persistent impairment induced by low-molecular-weight oligomers. J. Neurosci. 33, 9626-9634. https://doi.org/10.1523/JNEUROSCI.0482-13.2013
  24. Furukawa, K., Sopher, B.L., Rydel, R.E., Begley, J.G., Pham, D.G., Martin, G.M., Fox, M., and Mattson, M.P. (1996). Increased activityregulating and neuroprotective efficacy of ${\alpha}$-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67, 1882-1896.
  25. Gendron, T.F., and Petrucelli, L. (2009). The role of tau in neurodegeneration. Mol. Neurodegener. 4, 13. https://doi.org/10.1186/1750-1326-4-13
  26. Ghosal, K., Vogt, D.L., Liang, M., Shen, Y., Lamb, B.T., and Pimplikar, S.W. (2009). Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc. Natl. Acad. Sci. USA 106, 18367-18372. https://doi.org/10.1073/pnas.0907652106
  27. Giliberto, L., d'Abramo, C., Acker, C.M., Davies, P., and D'Adamio, L. (2010). Transgenic expression of the amyloid-${\beta}$ precursor proteinintracellular domain does not induce Alzheimer's Disease-like traits in vivo. PLoS One 5, e11609. https://doi.org/10.1371/journal.pone.0011609
  28. Goedert, M. (2015). NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled $A{\beta}$, tau, and ${\alpha}$-synuclein. Science 349, 1255555. https://doi.org/10.1126/science.1255555
  29. Goedert, M., and Spillantini, M.G. (2006). A century of Alzheimer's disease. Science 314, 777-781. https://doi.org/10.1126/science.1132814
  30. Gomez-Isla, T., Price, J.L., McKeel, D.W. Jr., Morris, J.C., Growdon, J.H., and Hyman, B.T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J. Neurosci. 16, 4491-4500. https://doi.org/10.1523/JNEUROSCI.16-14-04491.1996
  31. Grimm, M.O., Grimm, H.S., Pätzold, A.J., Zinser, E.G., Halonen, R., Duering, M., Tschape, J.A., De Strooper, B., Muller, U., Shen, J., et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-${\beta}$ and presenilin. Nat. Cell Biol. 7, 1118-1123. https://doi.org/10.1038/ncb1313
  32. Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., and Binder, L.I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83, 4913-4917. https://doi.org/10.1073/pnas.83.13.4913
  33. Gunawardena, S., and Goldstein, L.S. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389-401. https://doi.org/10.1016/S0896-6273(01)00496-2
  34. Hamid, R., Kilger, E., Willem, M., Vassallo, N., Kostka, M., Bornhovd, C., Reichert, A.S., Kretzschmar, H.A., Haass, C., and Herms, J. (2007). Amyloid precursor protein intracellular domain modulates cellular calcium homeostasis and ATP content. J. Neurochem. 102, 1264-1275. https://doi.org/10.1111/j.1471-4159.2007.04627.x
  35. Hardy, J.A., and Higgins, G.A. (1992). Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185. https://doi.org/10.1126/science.1566067
  36. Hardy, J., and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. https://doi.org/10.1126/science.1072994
  37. He, G., Luo, W., Li, P., Remmers, C., Netzer, W.J., Hendrick, J., Bettayeb, K., Flajolet, M., Gorelick, F., Wennogle, L.P., et al. (2010). Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease. Nature 467, 95-98. https://doi.org/10.1038/nature09325
  38. Herreman, A., Serneels, L., Annaert, W., Collen, D., Schoonjans, L., and De Strooper, B. (2000). Total inactivation of ${\gamma}$-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2, 461-462. https://doi.org/10.1038/35017105
  39. Hong, Y.G., Roh, S., Paik, D., and Jeong, S. (2017). Development of a reporter system for in vivo monitoring of ${\gamma}$-secretase activity in Drosophila. Mol. Cells 40, 73-81. https://doi.org/10.14348/molcells.2017.2294
  40. Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., and Malinow, R. (2006). AMPAR removal underlies Ab-induced synaptic depression and dendritic spine loss. Neuron 52, 831-843. https://doi.org/10.1016/j.neuron.2006.10.035
  41. Huang, Y., and Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204-1222. https://doi.org/10.1016/j.cell.2012.02.040
  42. Hung, A.Y., Haass, C., Nitsch, R.M., Qiu, W.Q., Citron, M., Wurtman, R.J., Growdon, J.H., and Selkoe, D.J. (1993). Activation of protein kinase C inhibits cellular production of the amyloid ${\beta}$-protein. J. Biol. Chem. 268, 22959-22962.
  43. Hutton, M., Lendon, C.L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, S., Isaacs, A., Grover, A., et al. (1998). Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702-705. https://doi.org/10.1038/31508
  44. IIhara, Y., Nukina, N., Miura, R., and Ogawara, M. (1986). Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease. J. Biochem. 99, 1807-1810.
  45. Jarrett, J.T., Berger, E.P., and Lansbury, P.T. Jr. (1993). The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693-4697. https://doi.org/10.1021/bi00069a001
  46. Kandel, E.R., Dudai, Y., and Mayford, M.R. (2014). The molecular and systems biology of memory. Cell 157, 163-186. https://doi.org/10.1016/j.cell.2014.03.001
  47. Kang, J., Lemaire, H.G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733-736. https://doi.org/10.1038/325733a0
  48. Klein, A.M., Kowall, N.W., and Ferrante, R.J. (1999). Neurotoxicity and oxidative damage of beta amyloid 1-42 versus beta amyloid 1-40 in the mouse cerebral cortex. Ann. N. Y. Acad. Sci. 893, 314-320. https://doi.org/10.1111/j.1749-6632.1999.tb07845.x
  49. Knott, A.B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008). Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 9, 505-518. https://doi.org/10.1038/nrn2417
  50. Kosik, K.S., Joachim, C.L., and Selkoe, D.J. (1986). Microtubuleassociated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 83, 4044-4048. https://doi.org/10.1073/pnas.83.11.4044
  51. Lacor, P.N., Buniel, M.C., Furlow, P.W., Clemente, A.S., Velasco, P.T., Wood, M., Viola, K.L., and Klein, W.L. (2007). $A{\beta}$ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796-807. https://doi.org/10.1523/JNEUROSCI.3501-06.2007
  52. Lambert, J.C., and Amouyel, P. (2011). Genetics of Alzheimer's disease: new evidences for an old hypothesis? Curr. Opin. Genet. Dev. 21, 295-301. https://doi.org/10.1016/j.gde.2011.02.002
  53. Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier- Boley, B., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452-1458. https://doi.org/10.1038/ng.2802
  54. Leissring, M.A., Murphy, M.P., Mead, T.R., Akbari, Y., Sugarman, M.C., Jannatipour, M., Anliker, B., Müller, U., Saftig, P., De Strooper, B, et al. (2002). A physiologic signaling role for the ${\gamma}$-secretasederived intracellular fragment of APP. Proc. Natl. Acad. Sci. USA 99, 4697-4702. https://doi.org/10.1073/pnas.072033799
  55. Li, S., Hong, S., Shepardson, N.E., Walsh, D.M., Shankar, G.M., and Selkoe, D. (2009). Soluble oligomers of amyloid b protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788-801. https://doi.org/10.1016/j.neuron.2009.05.012
  56. Lin, L., Georgievska, B., Mattsson, A., and Isacson, O. (1999). Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc. Natl. Acad. Sci. USA 96, 12108-12113. https://doi.org/10.1073/pnas.96.21.12108
  57. Lue, L.F., Kuo, Y.M., Roher, A.E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J.H., Rydel, R.E., and Rogers, J. (1999). Soluble amyloid ${\beta}$ peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155, 853-862. https://doi.org/10.1016/S0002-9440(10)65184-X
  58. Luo, Y., Bolon, B., Kahn, S., Bennett, B.D., Babu-Khan, S., Denis, P., Fan, W., Kha, H., Zhang, J., Gong, Y., et al. (2001). Mice deficient in BACE1, the Alzheimer's ${\beta}$-secretase, have normal phenotype and abolished ${\beta}$-amyloid generation. Nat. Neurosci. 4, 231-232. https://doi.org/10.1038/85059
  59. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82, 4245-4249. https://doi.org/10.1073/pnas.82.12.4245
  60. McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., Skipper, L., Murphy, M.P., Beard, J., Das, P., et al. (2005). $A{\beta}42$ is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191-199. https://doi.org/10.1016/j.neuron.2005.06.030
  61. McLean, C.A., Cherny, R.A., Fraser, F.W., Fuller, S.J., Smith, M.J., Beyreuther, K., Bush, A.I., and Masters, C.L. (1999). Soluble pool of $A{\beta}$ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860-866. https://doi.org/10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
  62. Muller, T., Meyer, H.E., Egensperger, R., and Marcus, K. (2008). The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog. Neurobiol. 85, 393-406. https://doi.org/10.1016/j.pneurobio.2008.05.002
  63. Muller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, Horn AH, Sticht H, de Souza Silva MA, Gottmann K, et al. (2015). Amyloid-${\beta}$ dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain 139, 509-525.
  64. Nelson, P.T., Alafuzoff, I., Bigio, E.H., Bouras, C., Braak, H., Cairns, N.J., Castellani, R.J., Crain, B.J., Davies, P., Del Tredici, K., et al. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362-381. https://doi.org/10.1097/NEN.0b013e31825018f7
  65. Nhan, H.S., Chiang, K., and Koo, E.H. (2016). The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol. 129, 1-19.
  66. Nikolaev, A., McLaughlin, T., O'Leary, D.D., and Tessier-Lavigne, M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981-989. https://doi.org/10.1038/nature07767
  67. Palop, J.J., and Mucke, L. (2010). Amyloid-${\beta}$-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812-818. https://doi.org/10.1038/nn.2583
  68. Palop, J.J., and Mucke, L. (2016). Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777-792. https://doi.org/10.1038/nrn.2016.141
  69. Reddy, P.H., and Beal, M.F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol. Med. 14, 45-53. https://doi.org/10.1016/j.molmed.2007.12.002
  70. Reddy P.H., and Reddy, T.P. (2011). Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res. 8, 393-409. https://doi.org/10.2174/156720511795745401
  71. Reinhard, C., Hébert, S.S., and De Strooper, B. (2005). The amyloid-${\beta}$ precursor protein: integrating structure with biological function. EMBO J. 24, 3996-4006. https://doi.org/10.1038/sj.emboj.7600860
  72. Ring, S., Weyer, S.W., Kilian, S.B., Waldron, E., Pietrzik, C.U., Filippov, M.A., Herms, J., Buchholz, C., Eckman, C.B., Korte, M., et al. (2007). The secreted ${\beta}$-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J. Neurosci. 27, 7817-7826. https://doi.org/10.1523/JNEUROSCI.1026-07.2007
  73. Roberson, E.D., Scearce-Levie, K., Palop, J.J., Yan, F., Cheng, I.H., Wu, T., Gerstein, H., Yu, G.Q., and Mucke, L. (2007). Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316, 750-754. https://doi.org/10.1126/science.1141736
  74. Ryan, K.A., and Pimplikar, S.W. (2005). Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J. Cell Biol. 171, 327-335. https://doi.org/10.1083/jcb.200505078
  75. Selkoe, D.J. (1998). The cell biology of ${\beta}$-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447-453. https://doi.org/10.1016/S0962-8924(98)01363-4
  76. Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., and Sabatini, B.L. (2007). Natural oligomers of the Alzheimer amyloid-${\beta}$ protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866-2875. https://doi.org/10.1523/JNEUROSCI.4970-06.2007
  77. Shankar, G.M., Li, S., Mehta, T.H., Garcia-Munoz, A., Shepardson, N.E., Smith, I., Brett, F.M., Farrell, M.A., Rowan, M.J., Lemere, C.A., et al. (2008). Amyloid-${\beta}$ protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837-842. https://doi.org/10.1038/nm1782
  78. Simic, G., Kostovic, I., Winblad, B., and Bogdanovic, N. (1997). Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. J. Comp. Neurol. 379, 482-494. https://doi.org/10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
  79. Skovronsky, D.M., Moore, D.B., Milla, M.E., Doms, R.W., and Lee, V.M. (2000). Protein kinase C-dependent ${\alpha}$-secretase competes with ${\beta}$-secretase for cleavage of amyloid-${\beta}$ precursor protein in the trans- Golgi network. J. Biol. Chem. 275, 2568-2575. https://doi.org/10.1074/jbc.275.4.2568
  80. Small, S.A., and Petsko, G.A. (2015). Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat. Rev. Neurosci. 16, 126-132. https://doi.org/10.1038/nrn3896
  81. Spires-Jones, T.L., and Hyman, B.T. (2014). The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron 82, 756-771. https://doi.org/10.1016/j.neuron.2014.05.004
  82. Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S., and Roses, A.D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977-1981. https://doi.org/10.1073/pnas.90.5.1977
  83. Struhl, G., and Adachi, A. (1998). Nuclear access and action of notch in vivo. Cell 93, 649-660. https://doi.org/10.1016/S0092-8674(00)81193-9
  84. Swerdlow, R.H., Burns, J.M., and Khan, S.M. (2010). The Alzheimer's disease mitochondrial cascade hypothesis. J. Alzheimers Dis. 20, 265-279. https://doi.org/10.3233/JAD-2010-100339
  85. Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M.W., Okamoto, S., Dziewczapolski, G., Nakamura, T., Cao, G., Pratt, A.E., et al. (2013). $A{\beta}$ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. USA 110, E2518-E2527. https://doi.org/10.1073/pnas.1306832110
  86. Tanzi, R.E. (2012). The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006296.
  87. Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A., and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572-580. https://doi.org/10.1002/ana.410300410
  88. Tu, S., Okamoto, S., Lipton, S.A., and Xu, H. (2014). Oligomeric $A{\beta}$ induced synaptic dysfunction in Alzheimer's disease. Mol. Neurodegener. 9, 48. https://doi.org/10.1186/1750-1326-9-48
  89. Wakabayashi, T., Craessaerts, K., Bammens, L., Bentahir, M., Borgions, F., Herdewijn, P., Staes, A., Timmerman, E., Vandekerckhove, J., Rubinstein, E., et al. (2009). Analysis of the ${\gamma}$- secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nat. Cell Biol. 11, 1340-1346. https://doi.org/10.1038/ncb1978
  90. Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J. (2002). Naturally secreted oligomers of amyloid ${\beta}$ protein potently inhibit hippocampal longterm potentiation in vivo. Nature 416, 535-539. https://doi.org/10.1038/416535a
  91. Wang, X., Wang, Z., Chen, Y., Huang, X., Hu, Y., Zhang, R., Ho, M.S., and Xue, L. (2014). FoxO mediates APP-induced AICD-dependent cell death. Cell Death Dis. 5, e1233. https://doi.org/10.1038/cddis.2014.196
  92. Wei, W., Nguyen, L.N., Kessels, H.W., Hagiwara, H., Sisodia, S., and Malinow, R. (2010). Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat. Neurosci. 13, 190-196. https://doi.org/10.1038/nn.2476
  93. Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T., and DeLong, M.R. (1981). Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10, 122-126. https://doi.org/10.1002/ana.410100203
  94. Wirths, O., Breyhan, H., Cynis, H., Schilling, S., Demuth, H.U., and Bayer, T.A. (2009). Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol. 118, 487-496. https://doi.org/10.1007/s00401-009-0557-5
  95. Wirths, O., and Bayer, T.A. (2010). Neuron loss in transgenic mouse models of Alzheimer's disease. Int. J. Alzheimers Dis. 2010.
  96. Zhang, Z., Nadeau, P., Song, W., Donoviel, D., Yuan, M., Bernstein, A., and Yankner, B.A. (2000). Presenilins are required for ${\gamma}$-secretase cleavage of ${\beta}$-APP and transmembrane cleavage of Notch-1. Nat. Cell Biol. 2, 463-465. https://doi.org/10.1038/35017108
  97. Zhou, S., Zhou, H., Walian, P.J., and Jap, B.K. (2005). CD147 is a regulatory subunit of the ${\gamma}$-secretase complex in Alzheimer's disease amyloid ${\beta}$-peptide production. Proc. Natl. Acad. Sci. USA 102, 7499-7504. https://doi.org/10.1073/pnas.0502768102
  98. Zhu, C.W., Livote, E.E., Scarmeas, N., Albert, M., Brandt, J., Blacker, D., Sano, M., and Stern, Y. (2013). Long-term associations between cholinesterase inhibitors and memantine use and health outcomes among patients with Alzheimer's disease. Alzheimers Dementia 9, 733-740. https://doi.org/10.1016/j.jalz.2012.09.015

Cited by

  1. Peptides as Potential Therapeutics for Alzheimer’s Disease vol.23, pp.2, 2018, https://doi.org/10.3390/molecules23020283
  2. Gastrodin Attenuates Bilateral Common Carotid Artery Occlusion-Induced Cognitive Deficits via Regulating Aβ-Related Proteins and Reducing Autophagy and Apoptosis in Rats vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00405
  3. The neuroprotective role of melatonin in neurological disorders vol.96, pp.7, 2017, https://doi.org/10.1002/jnr.24220
  4. MicroRNAs in Alzheimer’s Disease: Diagnostic Markers or Therapeutic Agents? vol.10, pp.None, 2017, https://doi.org/10.3389/fphar.2019.00665
  5. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8748253
  6. Effects of δ-Catenin on APP by Its Interaction with Presenilin-1 vol.42, pp.1, 2017, https://doi.org/10.14348/molcells.2018.0273
  7. Novel antibody against oligomeric amyloid-β: Insight into factors for effectively reducing the aggregation and cytotoxicity of amyloid-β aggregates vol.67, pp.None, 2017, https://doi.org/10.1016/j.intimp.2018.12.014
  8. Understanding the Amyloid Hypothesis in Alzheimer’s Disease vol.68, pp.2, 2017, https://doi.org/10.3233/jad-180802
  9. Play in advance against neurodegeneration: exploring enteric glial cells in gut-brain axis during neurodegenerative diseases vol.12, pp.6, 2017, https://doi.org/10.1080/17512433.2019.1612744
  10. Nanoparticle-mediated approaches for Alzheimer’s disease pathogenesis, diagnosis, and therapeutics vol.314, pp.None, 2017, https://doi.org/10.1016/j.jconrel.2019.10.034
  11. Aquaporin 4 Suppresses Neural Hyperactivity and Synaptic Fatigue and Fine-Tunes Neurotransmission to Regulate Visual Function in the Mouse Retina vol.56, pp.12, 2017, https://doi.org/10.1007/s12035-019-01661-2
  12. Telomerase increasing compound protects hippocampal neurons from amyloid beta toxicity by enhancing the expression of neurotrophins and plasticity related genes vol.9, pp.1, 2017, https://doi.org/10.1038/s41598-019-54741-7
  13. Modeling Alzheimer’s disease with iPSC-derived brain cells vol.25, pp.1, 2017, https://doi.org/10.1038/s41380-019-0468-3
  14. Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast vol.8, pp.None, 2017, https://doi.org/10.3389/fcell.2020.592159
  15. Roles of VMP1 in Autophagy and ER–Membrane Contact: Potential Implications in Neurodegenerative Disorders vol.13, pp.None, 2017, https://doi.org/10.3389/fnmol.2020.00042
  16. Opposite Roles of δ- and μ-Opioid Receptors in BACE1 Regulation and Alzheimer’s Injury vol.14, pp.None, 2017, https://doi.org/10.3389/fncel.2020.00088
  17. Pharmacological Characterizations of anti-Dementia Memantine Nitrate via Neuroprotection and Vasodilation in Vitro and in Vivo vol.11, pp.3, 2017, https://doi.org/10.1021/acschemneuro.9b00242
  18. Genistein protects against amyloid‐beta‐induced toxicity in SH‐SY5Y cells by regulation of Akt and Tau phosphorylation vol.34, pp.4, 2017, https://doi.org/10.1002/ptr.6560
  19. Witnessed apneas are associated with elevated tau-PET levels in cognitively unimpaired elderly vol.94, pp.17, 2020, https://doi.org/10.1212/wnl.0000000000009315
  20. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region vol.43, pp.8, 2017, https://doi.org/10.14348/molcells.2020.0060
  21. Adenosine Metabolism in the Cerebral Cortex from Several Mice Models during Aging vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21197300
  22. Phytohormone Abscisic Acid Improves Memory Impairment and Reduces Neuroinflammation in 5xFAD Mice by Upregulation of LanC-Like Protein 2 vol.21, pp.22, 2020, https://doi.org/10.3390/ijms21228425
  23. Development and Application of a Chemical Probe Based on a Neuroprotective Flavonoid Hybrid for Target Identification Using Activity-Based Protein Profiling vol.11, pp.22, 2017, https://doi.org/10.1021/acschemneuro.0c00589
  24. CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer’s Disease—A Narrative Review vol.9, pp.2, 2017, https://doi.org/10.1007/s40120-020-00218-z
  25. Alzheimer’s, Parkinson’s Disease and Amyotrophic Lateral Sclerosis Gene Expression Patterns Divergence Reveals Different Grade of RNA Metabolism Involvement vol.21, pp.24, 2017, https://doi.org/10.3390/ijms21249500
  26. Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis vol.22, pp.2, 2017, https://doi.org/10.3390/ijms22020699
  27. The Microbiota–Gut–Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? vol.13, pp.1, 2021, https://doi.org/10.3390/nu13010037
  28. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review vol.15, pp.None, 2021, https://doi.org/10.2147/dddt.s310686
  29. Metabolic and amyloid PET network reorganization in Alzheimer’s disease: differential patterns and partial volume effects vol.15, pp.1, 2017, https://doi.org/10.1007/s11682-019-00247-9
  30. Platycodon grandiflorum Root Protects against Aβ-Induced Cognitive Dysfunction and Pathology in Female Models of Alzheimer’s Disease vol.10, pp.2, 2017, https://doi.org/10.3390/antiox10020207
  31. Involvement of α7nAChR in the Protective Effects of Genistein Against β-Amyloid-Induced Oxidative Stress in Neurons via a PI3K/Akt/Nrf2 Pathway-Related Mechanism vol.41, pp.2, 2021, https://doi.org/10.1007/s10571-020-01009-8
  32. Stem Cell Therapies in Alzheimer’s Disease: Applications for Disease Modeling vol.377, pp.2, 2017, https://doi.org/10.1124/jpet.120.000324
  33. Assessment of the Level of Rage in Cells Blood-Brain Barrier in Experimental Alzheimer’s Disease vol.15, pp.3, 2017, https://doi.org/10.1134/s1990519x21030032
  34. Humanin protects cortical neurons from calyculin A-induced neurotoxicities by increasing PP2A activity and SOD vol.131, pp.6, 2017, https://doi.org/10.1080/00207454.2020.1769617
  35. Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention vol.22, pp.16, 2017, https://doi.org/10.3390/ijms22168649
  36. Promising tacrine/huperzine A‐based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders: From relieving symptoms to modifying diseases through multitarget vol.158, pp.6, 2021, https://doi.org/10.1111/jnc.15379
  37. Gender-Dependent Deregulation of Linear and Circular RNA Variants of HOMER1 in the Entorhinal Cortex of Alzheimer’s Disease vol.22, pp.17, 2017, https://doi.org/10.3390/ijms22179205
  38. Hydrolyzed Chicken Meat Extract Attenuates Neuroinflammation and Cognitive Impairment in Middle-Aged Mouse by Regulating M1/M2 Microglial Polarization vol.69, pp.34, 2017, https://doi.org/10.1021/acs.jafc.1c03541
  39. Anti‐PrP monoclonal antibody as a novel treatment for neurogenesis in mouse model of Alzheimer's disease vol.11, pp.11, 2021, https://doi.org/10.1002/brb3.2365
  40. Amyloid-β 25-35 Induces Neurotoxicity through the Up-Regulation of Astrocytic System Xc− vol.10, pp.11, 2017, https://doi.org/10.3390/antiox10111685
  41. Accumulation of saposin in dystrophic neurites is linked to impaired lysosomal functions in Alzheimer’s disease brains vol.16, pp.1, 2017, https://doi.org/10.1186/s13024-021-00464-1
  42. Soluble amyloid-beta isoforms predict downstream Alzheimer’s disease pathology vol.11, pp.1, 2021, https://doi.org/10.1186/s13578-021-00712-3
  43. Crude Saponin from Platycodon grandiflorum Attenuates Aβ-Induced Neurotoxicity via Antioxidant, Anti-Inflammatory and Anti-Apoptotic Signaling Pathways vol.10, pp.12, 2017, https://doi.org/10.3390/antiox10121968
  44. Biomarkers used in Alzheimer’s disease diagnosis, treatment, and prevention vol.74, pp.None, 2017, https://doi.org/10.1016/j.arr.2021.101544