DOI QR코드

DOI QR Code

Groundwater Monitoring Network for Earthquake Surveillance and Prediction

국내 지진 감시·예측을 위한 지하수관측망의 활용 방안

  • Lee, Hyun A (Earth System Sciences Research Center, Yonsei University) ;
  • Hamm, Se-Yeong (Dept. of Geological Sciences, Pusan National University) ;
  • Woo, Nam C. (Earth System Sciences Research Center, Yonsei University)
  • 이현아 (연세대학교 지구시스템과학연구소) ;
  • 함세영 (부산대학교 지질환경과학과) ;
  • 우남칠 (연세대학교 지구시스템과학연구소)
  • Received : 2017.08.24
  • Accepted : 2017.09.19
  • Published : 2017.10.28

Abstract

To prevent the damages from earthquakes, various researches have been conducted around the world focusing on earthquake prediction and forecasting for several decades. Among various precursory phenomena, changes in groundwater level and quality are considered to be reliable for estimating the time of earthquake occurrence and its magnitude. In effects, some countries impacted by frequent earthquakes have established and operated the groundwater monitoring network for earthquake surveillance and prediction. In Korea, recently researches have begun for using groundwater monitoring techniques for earthquake prediction. In this paper, the groundwater monitoring networks of China, Japan, and the United States were reviewed focusing on the facilities and results of researches to deduce the tasks for earthquake prediction researches using groundwater monitoring techniques in Korea. In results, research needs are suggested in the implementation of groundwater monitoring networks for specifically earthquake surveillance with the real-time monitoring and the measures to quantify the degrees of abnormal changes in the relationship of distance from the earthquake epicenter.

지진에 의한 피해를 방지하기 위하여 지진 예측과 예보를 위한 다양한 연구가 전 세계적으로 시도되어 왔다. 지진예측지표 중, 지하수 수위 및 수질의 장기관측자료에서 지진 전에 나타나는 이상변동은 지질매체에 가해지는 압력의 변화와 매체 내 균열의 발달에 의한 것으로 지진의 발생 시기와 규모를 추측할 수 있는 것으로 평가되고 있다. 따라서 국외에서는 지하수 관측시스템을 지진감시 관측망의 보조관측망으로 활용하고 있으며, 실제 지진 예측에 활용되고 있다. 우리나라는 최근에서야 지하수를 활용한 지진예측연구가 시작되었으며, 그 가운데 발생한 2016년 9월의 경주지진 전후로 나타난 지하수의 변동은 많은 관심을 불러왔다. 이 연구는 지진감시 및 예측을 위해 적극적으로 지하수관측시설을 운용하고 있는 중국, 일본, 미국의 관측시설 현황 및 연구 사례를 분석, 검토하고 최근 우리나라에서 수행되기 시작한 지진예측 연구의 연구방향과 과제를 제시하고자 수행되었다. 그 결과, 앞으로 고품질의 자료를 생산할 수 있는 지진감시 전용의 단층대 지하수관측시설 구축과 주요 관측인자의 실시간 감시, 이상변동의 폭과 관측되는 거리에 대한 정밀한 평가 및 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Adinolfi Falcone, R., Carucci V., Falgiani, A., Manetta, M., Parisse, B., Petitta, M., Rusi, S., Spizzico, M. and Tallini, M. (2012) Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer after 2009 L'Aquila earthquake. Ital. J. Geosci., v.131(3), p.459-474.
  2. Bakun, W.H., Aagaard, B., Dost, B., Ellsworth, W.L., Hardebeck, J.L., Harris, R.A., Ji, C., Johnston, M.J.S., Langbein, J., Lienkaemper, J.J., Michael, A.J., Murray, J.R., Nadeau, R.M., Reasenberg, P.A., Reichle, M.S., Roeloffs, E.A., Shakal, A., Simpson, R.W. and Waldhauser, F. (2006) Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, v.437, p.969-974.
  3. Bakun, W.H., Bredehoeft, J., Burford, R.O., Ellsworth, W.L., Johnston, M.J.S., Jones, L., Lindh, A.G., Mortensen, C., Roeloffs, E., Schulz, S., Segall, P. and Thatcher, W. (1986) Parkfield Earthquake Prediction Scenarios and Response Plans. US Gelogical Survery Open-File Report 86-365, 46p.
  4. Brodsky, E.E., Roeloffs, E., Woodcock, D., Gall, I. and Manga, M. (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res., v.108, 2390. https://doi.org/10.1029/2002JB002321
  5. Che, Y. and Yu, J. (1992) The statistical characteristics of groundwater level anomaly before some moderatestrong earthquakes in the Eastern China continent. Seismol. Geol, v.14(1), p.23-29 (in Chinese with English abstract).
  6. Che, Y., Yu, J., Zhang, S., Fan, X., Guo, J., Zhang, T. and Yang, J. (2002) A discussion on the records of water level ''precursors'' and their discussion in well Shuozhou, Shanxi province. Acta Seismol. Sin., v.24(2), p.216 (in Chinese with English abstract).
  7. China Seismic Information, http://www.csi.ac.cn/publish/main/828/1108/index.html, last access: 2017.07.18. (in Chinese).
  8. Cicerone, R.D., Ebel, J.E. and Britton, J. (2009) A systematic compilation of earthquake precursors. Tectonophysics, v.476(3-4), p.371-396. https://doi.org/10.1016/j.tecto.2009.06.008
  9. Contadakis, M.E. and Asteriadis, G. (2001) Hydrologic Changes as Possible Earthquake Precursor in Greece. Nat. Hazards, v.23, p.29-47. https://doi.org/10.1023/A:1008176804533
  10. Cooper, H.H., Bredehoeft, J.D., Papadopulos, I.S. and Bennett, R.R. (1965) The response of Well-Aquifer Systems to Seismic Waves. J. Geophys. Res., v.70(16), p.3915-3926. https://doi.org/10.1029/JZ070i016p03915
  11. Deng, Q., Pu, Jiang, Jones, L.M. and Molnar, P. (1981) A preliminary analysis of reported changes in ground water and anomalous animal behavior before the 4 February 1975 Haicheng earthquake. Earthquake Prediction-An International Review, Maurice Ewing Series, 4, AGU, p.543-565.
  12. Du, G. (1989) Water radon variation in Hebi well and effects of earthquakes and explosions, Earthquake. v.1989-1, p.57-62 (in Chinese with English abstract).
  13. Du, J., Amita, K., Ohsawa, S., Zhang, Y., Kang, C. and Yamada, M. (2010) Experimental evidence on formation of imminent and short-term hydrochemical precursors for earthquakes. Appl. Geochem., v.25, p.586-592. https://doi.org/10.1016/j.apgeochem.2010.01.015
  14. Egawa, Y. (1980) The Fluctuation in Groundwater Level prior and after the Miyagi Oki Earthquakes. J. Jpn. Assoc. Groundw. Hydrol., v.22(3), p.119-128.
  15. Fleeger, G.M., Goode, D.J., Buckwalter, T.F. and Risser, D.W. (1999) Hydrologic Effects of the Pymatuning Earthquake of September 25, 1998, in Mrthwestern Pennsylvania. USGS WRIR 99-4170, 8p.
  16. Geological Survey of Japan, AIST, Well Web, https://gbank.gsj.jp/wellweb/GSJ/index.shtml, last access: 2017.9.4. (in Japanese).
  17. GIMS (Integrated Groundwater Information Service Center), http://www.gims.go.kr/, last access: 2017.9.4 (in Korean).
  18. Gu, Y., Ma, Z. and Gao, F. (1999) Study on characteristics of precursory anomalies before the $M_S4.0$ Shunyi earthquake and monitoring ability of precursor observational network in Beijing Area. Earthquake, v.19(2), p.209-213 (in Chinese with English abstract).
  19. Gupta, D. and Shahani, D.T. (2011) Estimation of Radon as an Earthquake Precursor: A Neural Network Approach. J. Geol. Soc. India, v.78, p.243-248. https://doi.org/10.1007/s12594-011-0090-8
  20. Hamm, S.-Y., Lee, S.-H., Park, Y.-S., Koh, K.-W., Cheong, J.-Y. and Lee, J.-H. (2009) Relationship between earthquake and groundwater change observed in Jeju Island, Korea. Asia Oceania Geosciences Society 6th Annual Meeting, Singapore, 2009.08.11-15, n.110.
  21. Healy, J.H. and Urban, T.C. (1985) In-Situ Fluid-Pressure Measurements for Earthquake Prediction: An Example from a Deep Well at Hi Vista, California. Pure Appl. Geophys., v.122, p.255-279. https://doi.org/10.1007/BF00874598
  22. Horton, J.W. Jr. and Williams, R.A. (2012) The 2011 Virginia earthquake: What are scientists learning?. EOS Transactions, American Geophysical Union, v.93(33), p.317-318. https://doi.org/10.1029/2012EO330001
  23. Huang, F., Li, M., Ma, Y., Han, Y., Tian, L., Yan, W. and Li, X. (2017) Studies on earthquake precursors in China: A review for recent 50 years. Geodesy Geodyn., v.8, p.1-12. https://doi.org/10.1016/j.geog.2016.12.002
  24. Huang, F.Q., Jian, C.L., Tang, Y., Xu, G.M., Deng, Z.H. and Chi, G.C. (2004) Response changes of some wells in the mainland subsurface fluid monitoring network of China, due to the September 21, 1999, MS7.6 Chi-Chi earthquake. Tectonophysics, v.390(1-4), p.217-234. https://doi.org/10.1016/j.tecto.2004.03.022
  25. Igarashi, G., Saeki, S., Takahata, N.M. Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M. and Sano, Y. (1995) Ground-Water Radon Anomaly Before the Kobe Earthquake in Japan. Science, v.269, p.60-61. https://doi.org/10.1126/science.269.5220.60
  26. Igarashi, G., Wakita, H., and Sato, T. (1992) Precursory and coseismic anomalies in well water levels observed for the February 2, 1992 Tokyo Bay earthquake. Geophys. Res. Lett., v.19, p.1583-1586. https://doi.org/10.1029/92GL01422
  27. Ikeda, K. and Abe, K. (1977) Chemical properties of groundwater related to earthquake prediction (地震子知に関連する地下水の化学的性質). Geology News, v.273, p.20-29 (in Japanese).
  28. Kawabe, I. (1991) Hydro-geochemical Anomalies Associated with Earthquakes. Zisin II, v.44, p.341-364 (in Japanese with English abstract). https://doi.org/10.4294/zisin1948.44.Supplement_341
  29. King, C.-Y. (1984) Earthquake hydrology and chemistry. Pure Appl. Geophys., v.122(2), p.141-142. https://doi.org/10.1007/BF00874587
  30. King, C.-Y., Azuma, S., Ohno, M., Asai, Y., He, P., Kitagawa, Y., Igarashi, G. and Wakita, H. (2000) In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan. Geophys. J. Int., v.143, p.469-477. https://doi.org/10.1046/j.1365-246X.2000.01272.x
  31. King, C.-Y., Zhang, W. and Zhang, Z. (2006) Earthquakeinduced Groundwater and Gas Changes. Pure Appl. Geophys., v.163, p.633-645. https://doi.org/10.1007/s00024-006-0049-7
  32. Kingsley, S.P., Biagi, P.F., Piccolo, R., Capozzi, V., Ermini, A., Khatkevich, Y.M. and Gordeev, E.I. (2001) Hydrogeochemical precursors of strong earthquakes: A realistic possibility in Kamchatka. Phys. Chem. Earth Pt. C, v.26(10-12), p.769-774. https://doi.org/10.1016/S1464-1909(01)00084-3
  33. Kitagawa, G. and Matsumoto, N. (1996) Detection of Coseismic Changes of Underground Water Level. J. Am. Stat. Assoc., v.91, p.521-528. https://doi.org/10.1080/01621459.1996.10476917
  34. Kitagawa, Y. and Koizumi, N. (2000) A study on the mechanism of coseismic groundwater changes: Interpretation by a groundwater model composed of multiple aquifers with different strain responses. J. Geophys. Res.- Sol. Ea., v.105(B8), p.19121-19134. https://doi.org/10.1029/2000JB900156
  35. Kitagawa, Y., Koizumi, N., Takahashi, M., Matsumoto, N. and Sato, T. (2006) Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M9.0). Earth Planets Space, v.58(2), p.173-179. https://doi.org/10.1186/BF03353375
  36. Koizumi, N. (1997) Review of Geochemical Research for Earthquake Prediction. J. Jpn. Nat. Disaster Sci., v.16(1), p.41-60 (in Japanese with English abstract).
  37. Koizumi, N. (2013) Earthquake prediction research based on observation of groundwater. Synthesiology, English ed., v.6(1), p.27-37.
  38. Koizumi, N., Takahashi, M., Matsumoto, N., Sato, T., Ohtani, R. and Kitagawa, Y. (2005) Hydrological Research for Earthquake Prediction - Trial for Detection of Preseismic Crustal Deformation from Groundwater Changes -. Jishin, v.58, p.247-258 (in Japanese with English abstract).
  39. Korea Meteological Administration, http://www.kma.go.kr,last access: 2017.07.19.
  40. Kossobokov, V.G. (2006) Testing earthquake prediction methods: <$M_WHRV{\geq}5.8$>>. Tectonophysics, v.413, p.25-31. https://doi.org/10.1016/j.tecto.2005.10.006
  41. Kumar, A., Singh, S., Mahajan, S., Singh Bajwa, B., Kalia, R. and Dhar, S. (2006) Earthquake precursory studies in Kangra valley of North West Himalayas, India, with special emphasis on radon emission. Appl. Radiat. Isot., v.67, p.1904-1911.
  42. Kuo, T.-K., Chin, P.-Y. and Feng, H.-T. (1974) Discussion on the change of ground-water level preceding a large earthquake from an earthquake source model. Acta Geophys. Sin., v.17(2), p.99-105 (in Chinese with English abstract).
  43. Lee, H.A. and Woo, N.C. (2012) Influence of the M9.0 Tohoku Earthquake on groundwater in Korea. Geosci. J., v.16(1), p.1-6. https://doi.org/10.1007/s12303-012-0010-y
  44. Lee, H.A (2013) Investigation of groundwater response to earthquakes using the national groundwater monitoring data of Korea. Doctoral dissertation, Yonsei University.
  45. Lee, H.A., Kim, M., Hong, T.-K. and Woo, N.C. (2011a) Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake. J. Soil Groundw. Environ., v.16(3), p.38-47 (in Korean with English abstract). https://doi.org/10.7857/JSGE.2011.16.3.038
  46. Lee, J.-Y. (2016) Gyeongju Earthquakes Recorded in Daily Grounwater Data at National Groundwater Monitoring Stations in Gyeongju. J. Soil Groundw. Environ., v.21(6), p.80-86 (in Korean with English abstract). https://doi.org/10.7857/JSGE.2016.21.6.080
  47. Lee, S.-H., Ha, K., Hamm, S.-Y. and Ko, K.-S. (2013a) Groundwater responses to the 2011 Tohoku Earthquake on Jeju Island, Korea. Hydrol. Process., v.27, p.1147-1157. https://doi.org/10.1002/hyp.9287
  48. Lee, S.-H., Ha, K., Shin, J.S., Ko, K.-S. and Hamm, S.-Y. (2013b) Successive Groundwater Level Chagnes on Jeju Island due to the MW9.0 Off the Pacific Coast of Tohoku Earthquake. Bull. Seismol. Soc. Am., v.103(2B), p.1614-1621. https://doi.org/10.1785/0120120054
  49. Lee, S.-H., Hamm, S.-Y., Ha, K., Kim, Y.C., Cheong, B.-K., Ko, K.-S., Ko, G.W. and Kim, G.P. (2011b) Analysis of Groundwater Level Changes Due to Earthquake in Jeju Island (For the Indonesian Earthquake with Magnitude 7.7 in 2010). J. Soil Groundw. Environ., v.16(2), p.41-51 (in Korean with English abstract) https://doi.org/10.7857/JSGE.2011.16.2.041
  50. Liu, C., Wang, G., Zhang, W. and Mei, J. (2009) Coseismic responses of groundwater levels in the three Gorges well-network to the Wenchuan Ms8.0 earthquake. Earthq. Sci., v.22(2), p.143-148. https://doi.org/10.1007/s11589-009-0143-x
  51. Liu, Y. (1997) A software of synthetic decisions methods of hydrochemistry and ground water table for earthquake prediction. Earthquake, v.17(1), p.54-60 (in Chinese with English abstract).
  52. Liu, Y., Chen, H. and Che, Y. (2006) Retrospect and Prospect of Observation and Study on Seismic Underground fluid in China. Recent Dev. World Seismol., v.7, p.3-12 (in Chinese with English abstract).
  53. Liu, Y., Lu, M.Y., Fu, H., Huang, P.Q. and Li, S.L. (2010) The researches on extraction of information in the groundwater and prediction of the strong earthquakes (地下流体动态信息提取与强震预测震预测技术硏究). Dizhen Publishing House, Beijing, 317p (in Chinese).
  54. Liu, Y. and Shi, J. (2000) Precautionary information of groundwater precursors in strong earthquakes (强震地下流体前兆信息特征). Earthquake, v.22(1), p.102-107 (in Chinese).
  55. Ma, J.-., Liu, X.-L. and Li, J.-Y. (2008) Anomaly characteristics of subsurface fluid in Tianjin region before Wen?an earthquake with MS5.1. Earthquake, v.28(1), p.73-38 (in Chinese with English abstract).
  56. Manga, M. and Rowland, J.C. (2009) Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids, v.9, p.237-250. https://doi.org/10.1111/j.1468-8123.2009.00250.x
  57. Manga, M. and Wang, C.-Y. (2007) Earthquake Hydrology - 4.10. Elsevier, p.293-320.
  58. Matsumoto, N., Kitagawa, Y. and Koizumi, N. (2007) Groundwater-level Anomalies Associated with a Hypothetical Preslip Prior to the Anticipated Tokai Earthquake: Detectability Using the Groundwater Observation Network of the Geological Survey of Japan, AIST. Pure Appl. Geophys., v.164, p.2377-2396. https://doi.org/10.1007/s00024-007-0278-4
  59. Merifield, P.M. and Lamar, D.L. (1985) Possible Strain Events Reflected in Water Levels in Wells along San Jacinto Fault Zone, Southern California. Pure Appl. Geophys., v.122, p.245-254. https://doi.org/10.1007/BF00874597
  60. Mignan, A., Jiang, C., Zechar, J.D., Wiemer, S., Wu, Z. and Huang, Z. (2013) Completeness of the Mainland China Earthquake Catalog and Implications for the Setup of the China Earthquake Forecast Testing Center. Bull. Seismol. Soc. Am., v.103(2A), p.845-859. https://doi.org/10.1785/0120120052
  61. Oh, Y.H. and Kim, G. (2015) A radon-thoron isotope pair as a reliable earthquake precursor. Sci. Rep. 5, 13084. https://doi.org/10.1038/srep13084
  62. Ohno, M., Sato, T., Notsu, K., Wakita, H. and Ozawa, K. (2006) Groundwater-level changes due to pressure gradient induced by nearby earthquakes off Izu peninsula, 1997. Pure Appl. Geophys., v.163(4), p.647-655. https://doi.org/10.1007/s00024-006-0041-2
  63. Ok, S.-I., Hamm, S.-Y., Kim, B.-S., Cheong, J.-Y., Woo, N.-C., Lee, S.-H., Koh, G.-W. and Park, Y.-S. (2010) Characteristics of Aquifer System and Change of Groundwater Level due to Earthquake in the Western Half of Jeju Island. Econ. Environ. Geol., v.43(4), p.359-369 (in Korean with English abstract).
  64. Oki, Y. and Hirada S. (1988) Groundwater Monitoring for Earthquake Prediction by an Amateur Network in Japan. Pure Appl. Geophys., v.126(2-4), p.211-240. https://doi.org/10.1007/BF00878997
  65. Onoue, K., Umeda, Y., Shigetomi, K., Asada, T., Hoso, Y. and Kondo, K. (2005) Observations of groundwater in areas reported with the anomalous changes of water levels of wells prior to Showa Nankai Earthquake. Annuals of Dsas. Prev. Res. Inst., Kyoto Univ., no.48B, p.185-190 (in Japanese with English abstract).
  66. Orihara, Y., Kamogawa, M. and Nagao, T. (2014) Preseismic Changes of the Level and Temperature of Confined Groundwater related to the 2011 Tohoku Earthquake, Sci. Rep. 4, 6907.
  67. Rexin, E.E., Oliver, J. and Prentiss, D. (1962) Seismically-induced fluctuations of the water level in the Nunn-Bush well in Milwaukee. Bull. Seismol. Soc. Am., v.52(1), p.17-25.
  68. Rikitake, T. (1979) Classification of earthquake precursors. Tectonophysics, v.54(3-4), p.293-309. https://doi.org/10.1016/0040-1951(79)90372-X
  69. Roeloffs, E. and Langbein, J. (1994) The Earhtquake Prediction Experiment at Parkfield, California, Rev. Geophys., v.32(3), p.315-336. https://doi.org/10.1029/94RG01114
  70. Roeloffs, E. and Quilty, E. (1997) Water Level and Strain Changes Preceding and Following the August 4, 1985 Kettleman Hills, California, Earthquake. Pure Appl. Geophys., v.149, p.21-60. https://doi.org/10.1007/BF00945160
  71. Roeloffs, E. (1988) Hydrologic precursors to earthquakes: A review. Pure Appl. Geophys., v.126(2-4), p.177-209. https://doi.org/10.1007/BF00878996
  72. Roeloffs, E. (2000) The Parkfield, California earthquake experiment: An update in 2000. Curr. Sci., 2000, p.1226-1236.
  73. Roeloffs, E. (2006) Evidence for Aseismic Deformation Rate Changes Prior to Earthquakes. Annu. Rev. Earth Planet. Sci., v.34, p.591-627. https://doi.org/10.1146/annurev.earth.34.031405.124947
  74. Roeloffs, E., Sneed, M., Galloway, D.L., Sorey, M.L., Farrar, C.D., Howle, J.F. and Hughes, J. (2003) Waterlevel changes induced by local and distant earthquakes at Long Valley caldera, California. J. Volcanol. Geotherm. Res., v.127, p.269-303. https://doi.org/10.1016/S0377-0273(03)00173-2
  75. Roeloffs, E.A. (1998) Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res.- Sol. Ea, v.103(1), p.869-889. https://doi.org/10.1029/97JB02335
  76. Rojstaczer, S. and Wolf, S. (1992) Permeability changes associated with large earthquakes: An example from Loma Prieta, California. Goelogy, v.20, p.211-214. https://doi.org/10.1130/0091-7613(1992)020<0211:PCAWLE>2.3.CO;2
  77. Ruegg, J.C., Rudloff, A., Vigny, C., Madariaga, R., de Chabalier, J.B., Campos, J., Kausel, E., Barrientos, S. and Dimitrov, D. (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitucion and Concepcion in Chile. Phys. Earth and Planet. Inter., v.175, p.78-85. https://doi.org/10.1016/j.pepi.2008.02.015
  78. Satake, H., Ohashi, M. and Hayashi, Y. (1985) Discharge of H2 from Atotsugawa and Ushikubi Faults, Japan, and its Relation to Earthquakes. Pure Appl. Geophys., v.122, p.185-193. https://doi.org/10.1007/BF00874592
  79. Scholz, C.H., Sykes, L.R. and Aggarwal, Y.P. (1973) Earthquake Prediction: A Physical Basis. Science, v.181, p.803-810. https://doi.org/10.1126/science.181.4102.803
  80. Shapiro, M.H., Melvin, J.D., Tombrello, T.A. and Mendenhall, M.H. (1981) Relationship of the 1979 Southern California Radon Anomaly to a Possible Regional Strain Event. J. Geophys. Res., v.86(B3), p.1725-1730. https://doi.org/10.1029/JB086iB03p01725
  81. Shi, Z., Wang, G. and Liu, C. (2014) Advances in research on earthquake fluids hydrogeology in China: a review. Earthq. Sci., v.26(6), p.415-425. https://doi.org/10.1007/s11589-014-0060-5
  82. Skelton, A., Andren, M., Kristmannsdottir, H., Stockmann, G., Morth, C.-M. Sveinbjörnsdottir, A., Jonsson, S., Sturkell, E., Guorunardottir, H.R., Hjartarson, H., Siegmund, H. and Kockum, I.. (2014) Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci., v.7, p.752-756. https://doi.org/10.1038/ngeo2250
  83. Snieder, R. and van Eck, T. (1997) Earthquake Prediction: a political problem?. Int. J. Earth Sci., v.86(2), p.446-463.
  84. Stejskal, V., Kasparek, L., Kopylova, G.N., Lyubushin, A.A. and Sklsky, L. (2009) Precursory groundwater level chagnes in the period activation of the weak intraplate seismic activity on the NE margin of the Bohemian Massif (Central Europe) in 2005. Stud. Geophys. Geod., v.53(2), p.215-238. https://doi.org/10.1007/s11200-009-0014-x
  85. Stejskal, V., Skalsky, L. and Kasparek, L. (2007) Results of two-years' seismo-hydrological monitoring in the area of the Hronov-Porici fault zone, Western Sudetes. Acta Geodyn. Geomater., v.4-4(148), p.59-76.
  86. Sugisaki, R. and Sugiura, T. (1985) Geochemical Indicator of Tectonic Stress Resulting in an Earthquake in Central Japan, 1984. Science, v.229, p.1261-1262. https://doi.org/10.1126/science.229.4719.1261
  87. Sugisaki, R. and Sugiura, T. (1986) Gas anomalies at three mineral springs and a fumarole before an inland earthquake, central Japan. J. Geophys. Res., v.91(B12), p.12296-12304. https://doi.org/10.1029/JB091iB12p12296
  88. Sun, Z., Sun, T. and Wang, Y. (1997) Anomalous feature of ground water behaviour in Banqiao well around Shunyi earthquake with $M_S4.0$, Beijing. Earthquake, v.17(4), p.425-428. (in Chinese with English abstract)
  89. The Headquarters for Earthquake Research Promotion, http://www.jishin.go.jp/, last access: 2017.7.18. (in Japanese).
  90. Tsunogai, U. and Wakita, H. (1995) Precursory Chemical Changes in Ground Water: Kobe Earthquake, Japan. Science, v.269, p.61-63. https://doi.org/10.1126/science.269.5220.61
  91. Tsunogai, U. and Wakita, H. (1996) Anomalous changes in Groundwater Chemistry: Possible Precursors of the 1995 Hyogo-ken Nanbu Earthquake, Japan. J. Phys. Earth, v.44, p.381-390. https://doi.org/10.4294/jpe1952.44.381
  92. U. S. Geological Survey Earthquake Hazard Program, https://earthquake.usgs.gov/research/parkfield/discontinued. php, last access: 2017.09.04.
  93. Uyeda, S. (2013) On Earthquake Prediction in Japan. P. Jpn. Acad. B-Phys., v.89(9), p.391-400. https://doi.org/10.2183/pjab.89.391
  94. Wakita, H. (1975) Water wells as possible indicators of tectonic strain. Science, v.189, p.553-555. https://doi.org/10.1126/science.189.4202.553
  95. Wakita, H. (1977) Geochemistry as a tool for earthquake prediction. J. Phys. Earth, v.25, p.175-183. https://doi.org/10.4294/jpe1952.25.Supplement_S175
  96. Wakita, H. (1981) Precursory Changes in Groundwater Prior to the 1978 Izu-Oshima-Kinkai Earthquake. in Earthquake Prediction (eds D.W. Simpson and P.G. Richards), American Geophysical Union, Washington, D.C., p.527-532.
  97. Wakita, H. (1996) Geochemical challenge to earthquake prediction. Proc. Natl. Acad. Sci. U.S.A., v.93, p.3781-3786. https://doi.org/10.1073/pnas.93.9.3781
  98. Wakita, H., Igarashi, G. and Notsu, K. (1991) An anomalous radon decrease in groundwater prior to an M6.0 earthquake: a possible precursor?. Geophys. Res. Lett., v.18(4), p.629-632. https://doi.org/10.1029/91GL00824
  99. Wakita, H., Nakamura, Y. and Sano, Y. (1988) Short-term and Intermediate-term Geochemical Precursors. Pure Appl. Geophys., v.126(2-4), p.267-278. https://doi.org/10.1007/BF00878999
  100. Wallace, R.E. and Teng, T.-L. (1980) Prediction of the Sungpan-Pingwu earthquakes, August 1976. Bull. Seismol. Soc. Am., v.70(4), p.1199-1223.
  101. Wan, D. (1992) Recording capacity variation of water level in wells and its relation to large earthquake. J. Seismol. Res., v.15(4), p.381-391 (in Chinese with English abstract).
  102. Wang, C. and Manga, M. (2009) Earthquakes and Water. Lecture Notes in Earth Sciences 114, Springer-Verlag, Berlin Heidelberg, 218p.
  103. Wang,, C.Y. and Manga, M. (2014) Earthquakes and water, in Encyclopedia of Complexity and Systems Science. Springer, New York, p.1-38.
  104. Wang, K., Chen, Q.-F., Sun, S. and Wang, A. (2006) Predicting the 1975 Haicheng Earthquake. Bull. Seismol. Soc. Am., v.96(3), p.757-795. https://doi.org/10.1785/0120050191
  105. Wang, L.Q. and Li, S.-Y. (1993) A probable mechanism of the water level subsidence in wells as a precursor of an earthquake event. Acta Seismol. Sin. (English ed.), v.6(3), p.685-696. https://doi.org/10.1007/BF02650407
  106. Woo, N.C., Piao, J., Lee, J.-M., Lee, C.-J., Kang, I.-O. and Choi, D.-H. (2015) Abnormal Changes in Groundwater Monitoring Data Due to Small-Magnitude Earthquakes. J. Eng. Geol., v.25(1), p.21-33 (in Korean with English abstract). https://doi.org/10.9720/kseg.2015.1.21
  107. Yin, X.-C., Chen, X.-Z., Song, Z.-P. and Yin, C. (1995) A New Approach to Earthquake Prediction: The Load/Unload Response Ratio (LURR) Theory. Pure Appl. Geophys., v.145(3/4), p.701-715. https://doi.org/10.1007/BF00879596
  108. Yu, J., Che, Y., Zhang, P. and Wang, J. (1998) Anomalies of ground fluids before Zhangjiakou earthquake with $M_S4.2$. Earthquake, v.18(4), p.405-409 (in Chinese with English abstract).
  109. Zhang, S., Wu, Z. and Jiang, C. (2016) Reducing False Alarms of Annual Forecast in the Central China North-South Seismic Belt by Reverse Tracing of Precursors (RTP) Using the Pattern Informatics (PI) 'Hotspots'. Pure Appl. Geophys., v.174, p.2401-2410.
  110. Zheng, X. and Feng, D. (1989) A fuzzy method for evaluating the earthquake monitoring ability of the precursors with seismic activity. North China Earthquake Sciences, v.10(2), p.20-24 (in Chinese with English abstract).