참고문헌
- Admyre, C., Johansson, S. M., Qazi, K. R., Filen, J.-J., Lahesmaa, R., Norman, M., Neve, E. P. A., Scheynius, A., and Gabrielsson, S. (2007) Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969-1978. https://doi.org/10.4049/jimmunol.179.3.1969
- Alvarez, M. L., Khosroheidari, M., Ravi, R. K., and DiStefano, J. K. (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 82, 1024-1032. https://doi.org/10.1038/ki.2012.256
- Caby, M.-P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., and Bonnerot, C. (2005) Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17, 879-887. https://doi.org/10.1093/intimm/dxh267
- Cvjetkovic, A., Lotvall, J., and Lasser, C. (2014) The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J. Extracellular Vesicles 3, 23111. DOI: 10.3402/jev.v3.23111
- Dimov, I., Jankovic Velickovic, L., and Stefanovic, V. (2009) Urinary exosomes. SCI World J. 9, 1107-1118. https://doi.org/10.1100/tsw.2009.128
- Ekstrom, K., Valadi, H., Sjostrand, M., Malmhall, C., Bossios, A., Eldh, M., and Lotvall, J. (2012) Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J. Extracellular Vesicles 1, 18389. DOI:10.3402/jev.v1i0.18389
- Hata, T., Murakami, K., Nakatani, H., Yamamoto, Y., Matsuda, T., and Aoki, N. (2010) Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem. Biophys. Res. Commun. 396, 528-533. https://doi.org/10.1016/j.bbrc.2010.04.135
- Keller, S., Rupp, C., Stoeck, A., Runz, S., Fogel, M., Lugert, S., Hager, H. D., Abdel-Bakky, M. S., Gutwein, P., and Altevogt, P. (2007) CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 72, 1095-1102. https://doi.org/10.1038/sj.ki.5002486
- Lobb, R. J., Becker, M., Wen Wen, S., Wong, C. S. F., Wiegmans, A. P., Leimgruber, A., and Moller, A. (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracellular Vesicles 4, 27031. https://doi.org/10.3402/jev.v4.27031
- Mathivanan, S. and Simpson, R. J. (2009) ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 9, 4997-5000. https://doi.org/10.1002/pmic.200900351
- Momen-Heravi, F., Balaj, L., Alian, S., Trachtenberg, A. J., Hochberg, F. H., Skog, J., and Kuo, W. P. (2012) Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front. Physiol. 3, 162.
- Peterson, M. F., Otoc, N., Sethi, J. K., Gupta, A., and Antes, T. J. (2015) Integrated systems for exosome investigation. Methods 87, 31-45. https://doi.org/10.1016/j.ymeth.2015.04.015
- Pisitkun, T., Shen, R.-F., and Knepper, M. A. (2004) Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA 101, 13368-13373. https://doi.org/10.1073/pnas.0403453101
- Rekker, K., Saare, M., Roost, A. M., Kubo, A.-L., Zarovni, N., Chiesi, A., Salumets, A., and Peters, M. (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem. 47, 135-138.
- Tauro, B. J., Greening, D. W., Mathias, R. A., Ji, H., Mathivanan, S., Scott, A. M., and Simpson, R. J. (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293-304. https://doi.org/10.1016/j.ymeth.2012.01.002
- Xiao, Z., Blonder, J., Zhou, M., and Veenstra, T. D. (2009) Prteomic analysis of extracellular matrix and vesicles. J. Proteomics 72, 34-45. https://doi.org/10.1016/j.jprot.2008.11.011
- Yamada, T., Inoshima, Y., Matsuda, T., and Ishiguro, N. (2012) Comparison of methods for isolating exosomes from bovine milk. J. Vet. Med. Sci. 74, 1523-1525. https://doi.org/10.1292/jvms.12-0032
- Yuana, Y., Bertina, R. M., and Osanto, S. (2011) Pre-analytical and analytical issues in the analysis of blood microparticles. Thrombosis and Haemostasis 105, 396. https://doi.org/10.1160/TH10-09-0595
피인용 문헌
- Milk MicroRNAs in Health and Disease vol.18, pp.3, 2019, https://doi.org/10.1111/1541-4337.12424
- Microvesicles Derived from TGF-β1 Stimulated Hepatic Stellate Cells Aggravate Hepatocellular Injury vol.28, pp.16, 2017, https://doi.org/10.1089/scd.2019.0032
- Short communication: Dietary bovine milk–derived exosomes improve bone health in an osteoporosis-induced mouse model vol.103, pp.9, 2017, https://doi.org/10.3168/jds.2019-17501
- Role of Human Milk Bioactives on Infants' Gut and Immune Health vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.604080
- Comparative analysis of dietary exosome-derived microRNAs from human, bovine and caprine colostrum and mature milk vol.63, pp.3, 2017, https://doi.org/10.5187/jast.2021.e39
- Ruminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity? vol.13, pp.8, 2017, https://doi.org/10.3390/nu13082505
- Comparison of methods for pre-processing, exosome isolation, and RNA extraction in unpasteurized bovine and human milk vol.16, pp.9, 2017, https://doi.org/10.1371/journal.pone.0257633
- Perspectives of bovine and human milk exosomics as health biomarkers for advancing systemic therapeutic potential vol.35, pp.4, 2017, https://doi.org/10.1080/08905436.2021.1979033