DOI QR코드

DOI QR Code

Response Analysis Model of Social Networks Using Fuzzy Sets and Feedback-Based System Dynamics

퍼지집합과 피드백 기반의 시스템 다이나믹스를 이용한 소셜네트웍의 반응 분석 모델

  • Cho, Min-Ho (Dept. Computer System Engineering, JungWon University)
  • 조민호 (중원대학교 컴퓨터시스템공학과)
  • Received : 2017.08.23
  • Accepted : 2017.10.18
  • Published : 2017.10.31

Abstract

A social network is a typical social science environment with both network and iteration characteristics. This research presents a reaction analysis model of how each node responds to social networks when given input such as promotions or incentives. In addition, the setting value of a specific node is changed while examining the response of each node. And we try to understand the reactions of the nodes involved. The reaction analysis model is constructed by applying various techniques such as unidirectional, fuzzy set, weighting, and cyclic feedback, so it can accommodate the complicated environment of practice. Finally, the implementation model is implemented using Vensim rather than NetLogo because it requires repetitive input, change of setting value in real time, and analysis of association between nodes.

소셜네트웍은 네트워크와 이터레이션의 특성을 모두 가지는 대표적인 소셜 사이언스 환경이다. 이번 연구는 소셜네트웍에 프로모션이나 인센티브 같은 입력을 주었을 때, 각 노드들이 어떻게 반응하는지에 대한 반응분석 모델을 제시한다. 또한, 각 노드의 반응을 살피면서 특정 노드의 설정 값을 변경한다. 그리고 연관된 노드들의 반응을 파악해 본다. 반응 분석 모델은 단방향, 퍼지집합, 가중치 부여, 순환 피드백 등 다양한 기법을 적용하여 구성되었으므로 실무의 복잡한 환경을 수용할 수 있다. 마지막으로 구현하는 모델은 반복적인 입력, 실시간으로 설정 값을 변경, 노드간의 연관성에 대한 분석을 필요로 하므로 넷로고 보다는 Vensim을 활용하여 구현하였다.

Keywords

References

  1. A. Louni and K. Subbalakshmi, "Diffusion of Information in Social Networks," Social Networking Intelligent System Reference Library 65, 2014, pp. 1-22.
  2. F. Squazzoni, W. Jager, and B. Edmonds, "Social Simulation in the Social Science," Social Science Computer Review, vol. 32, Issue 3, 2014, pp. 279-294. https://doi.org/10.1177/0894439313512975
  3. S. Ghosh and N. Ganguly, "Structure and Evolution of Online Social Networks," Social Networking Intelligent System Reference Library 65, 2014, pp. 23-44.
  4. C. Cioffi-Revilla, "Computational Social Science," WILEY Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 3, May/June 2010, pp. 259-271. https://doi.org/10.1002/wics.95
  5. S. Tisue and U. Wilensky, "NetLogo: A Simple Environment for Modeling Complexity," Int. Conf. on Complex Systems, Boston, USA, May 2004, pp. 16-21.
  6. P. Otto and M. Simon, "Dynamic perspectives on social characteristics and sustainability in online community networks," System Dynamic Review, vol. 24, no. 3, June 2008, pp. 321-347. https://doi.org/10.1002/sdr.403
  7. J. Forrester, "The Begining of System Dynamics," Banquet Tal at the Int. Meeting of the System Dynamics Society, Stuttgart, Germany, July 1989.
  8. I. Lee and K. Shin, "A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation," J. of the Intelligence and Information System, vol. 16, no. 4, Dec. 2010, pp. 67-84.
  9. M. Trusov, R. Buckin, and K. Pauwels, "Effects of word-of-mouth versus traditional marketing: Finding from an internet social networking site," J. of Marketing, vol. 73, 2009, pp. 90-102. https://doi.org/10.1509/jmkg.73.5.90
  10. Y. Song, H. Hee, and K. Hwang, "A study on the Social Media Marketing 4 Type Model: Case Study and Marketing Effect Evaluation," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 9, 2015, pp. 1071-1078. https://doi.org/10.13067/JKIECS.2015.10.9.1071
  11. M. Cho, "Identificaton of Group Node using Genetic Algorithm and Re-Construction Technique of Social Network," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 7, 2015, pp. 837-843. https://doi.org/10.13067/JKIECS.2015.10.7.837
  12. M. Cho, "Modeling and Simulation of Social Network using Correction between Node and Node Weight," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 10, Oct. 2016, pp. 949-954. https://doi.org/10.13067/JKIECS.2016.11.10.949