References
- Brevetti G, Giugliano G, Brevetti L and Hiatt WR (2010) Inflammation in peripheral artery disease. Circulation 122, 1862-1875 https://doi.org/10.1161/CIRCULATIONAHA.109.918417
- Hirsch AT, Treat-Jacobson D, Lando HA and Hatsukami DK (1997) The role of tobacco cessation, antiplatelet and lipid-lowering therapies in the treatment of peripheral arterial disease. Vasc Med 2, 243-251 https://doi.org/10.1177/1358863X9700200314
- Jude EB, Oyibo SO, Chalmers N and Boulton AJ (2001) Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care 24, 1433-1437 https://doi.org/10.2337/diacare.24.8.1433
- Belch JJ, Topol EJ, Agnelli G et al (2003) Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med 163, 884-892 https://doi.org/10.1001/archinte.163.8.884
- Youssef F, Gupta P, Mikhailidis DP and Hamilton G (2005) Risk modification in patients with peripheral arterial disease: a retrospective survey. Angiology 56, 279-287 https://doi.org/10.1177/000331970505600307
- Annex BH (2013) Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 10, 387-396 https://doi.org/10.1038/nrcardio.2013.70
- Duan J, Murohara T, Ikeda H et al (2000) Hypercholesterolemia inhibits angiogenesis in response to hindlimb ischemia: nitric oxide-dependent mechanism. Circulation 102, Iii370-376
- Duan J, Murohara T, Ikeda H et al (2000) Hyperhomocysteinemia impairs angiogenesis in response to hindlimb ischemia. Arterioscler Thromb Vasc Biol 20, 2579-2585 https://doi.org/10.1161/01.ATV.20.12.2579
- Cheng XW, Kuzuya M, Kim W et al (2010) Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxiainduced factor-1 alpha reactivation in mice of advanced age. Circulation 122, 707-716 https://doi.org/10.1161/CIRCULATIONAHA.109.909218
- Djonov V, Baum O and Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314, 107-117 https://doi.org/10.1007/s00441-003-0784-3
- Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117, 3-32
- Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH and Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109, 337-346 https://doi.org/10.1172/JCI0214327
- Hristov M and Weber C (2004) Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med 8, 498-508 https://doi.org/10.1111/j.1582-4934.2004.tb00474.x
- Urbich C and Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95, 343-353 https://doi.org/10.1161/01.RES.0000137877.89448.78
- Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW and Lodder J (2008) Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 39, 2158-2165 https://doi.org/10.1161/STROKEAHA.107.507251
- Zampetaki A, Kirton JP and Xu Q (2008) Vascular repair by endothelial progenitor cells. Cardiovasc Res 78, 413-421 https://doi.org/10.1093/cvr/cvn081
- Krenning G, van Luyn MJ and Harmsen MC (2009) Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med 15, 180-189 https://doi.org/10.1016/j.molmed.2009.02.001
- Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo j 18, 3964-3972 https://doi.org/10.1093/emboj/18.14.3964
- Xu S, Zhu J, Yu L and Fu G (2012) Endothelial progenitor cells: current development of their paracrine factors in cardiovascular therapy. J Cardiovasc Pharmacol 59, 387-396 https://doi.org/10.1097/FJC.0b013e3182440338
- Tomioka H, Nakagami H, Tenma A et al (2014) Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One 9, e92597 https://doi.org/10.1371/journal.pone.0092597
- Nishikawa T, Nakagami H, Maeda A et al (2009) Development of a novel antimicrobial peptide, AG-30, with angiogenic properties. J Cell Mol Med 13, 535-546 https://doi.org/10.1111/j.1582-4934.2008.00341.x
- Nakagami H, Nishikawa T, Tamura N et al (2012) Modification of a novel angiogenic peptide, AG30, for the development of novel therapeutic agents. J Cell Mol Med 16, 1629-1639 https://doi.org/10.1111/j.1582-4934.2011.01406.x
- Smith LE, Shen W, Perruzzi C et al (1999) Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med 5, 1390-1395 https://doi.org/10.1038/70963
- Rabinovsky ED and Draghia-Akli R (2004) Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. Mol Ther 9, 46-55
- Fan W, Sun D, Liu J et al (2012) Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study. PLoS One 7, e45621 https://doi.org/10.1371/journal.pone.0045621
- Woo KY, Coutts PM and Sibbald RG (2012) A randomized controlled trial to evaluate an antimicrobial dressing with silver alginate powder for the management of chronic wounds exhibiting signs of critical colonization. Adv Skin Wound Care 25, 503-508 https://doi.org/10.1097/01.ASW.0000422628.63148.4b
Cited by
- Atrial natriuretic peptide accelerates human endothelial progenitor cell-stimulated cutaneous wound healing and angiogenesis pp.10671927, 2018, https://doi.org/10.1111/wrr.12641