과제정보
연구 과제 주관 기관 : 한국에너지기술평가원 (KETEP)
참고문헌
- Ahn, K. U., Kim, D. W., Kim, Y. J., & Park, C. S. (2016). Development of an Gaussian Process Model using a Data Filtering Method, Journal of the Architectural Institute of Korea: Planning & Design, 32(4), 97-105.
- Ahn, K. U., Kim, Y. J., & Park, C. S. (2012). Issues on Dynamic Building Energy Performance Assessment in Design Process, Journal of the Architectural Institute of Korea: Planning & Design, 28(12), 361-369.
- Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that constructs recurrent neural networks, IEEE transactions on Neural Networks, 5(1), 54-65. https://doi.org/10.1109/72.265960
- ASHRAE (2014). ASHRAE Guideline 14-2014: Measurement of Energy, Demand and Water Savings, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA
- Bottou, L., & Lin, C. J. (2007). Support vector machine solvers, Large scale kernel machines, 301-320.
- Breiman, L. (1996). Bagging predictors, Machine learning, 24(2), 123-140. https://doi.org/10.1023/A:1018054314350
- Breiman, L. (2001). Random Forest, Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- DOE (2016a). EnergyPlus 8.6 Engineering Reference, U.S. Department of Energy, Washington, DC.
- DOE (2016b). EnergyPlus 8.6 Input Output Reference, U.S. Department of Energy, Washington, DC.
- Edwards, R. E., New, J., & Parker, L. E. (2012). Predicting future hourly residential electrical consumption: A machine learning case study, Energy and Buildings, 49, 591-603. https://doi.org/10.1016/j.enbuild.2012.03.010
- Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning, Proceedings of the International Conference on Neural Networks, 1930-1935.
- Garg, A., & Tai, K. (2012). Review of genetic programming in modeling of machining processes, Proceedings of the International Conference on Modelling, Identification and Control(ICMIC), 653-658.
- Jovanovic, R. Z., Sretenovic, A. A., & Zivkovic, B. D. (2015). Ensemble of various neural networks for prediction of heating energy consumption, Energy and Buildings, 94, 189-199. https://doi.org/10.1016/j.enbuild.2015.02.052
- Kim, Y. M., Ahn, K. U., & Park, C. S. (2016). Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings, Sustainability, 8(6), 543. https://doi.org/10.3390/su8060543
- Louppe, G. (2014). Understanding random forests: From theory to practice, Doctoral dissertation, University of Liege, Liege, Belgium.
- Park, C. S. (2006). Normative Assessment of Technical Building Performance, Journal of the Architectural Institute of Korea: Planning & Design, 22(11), 337-344.
- Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning, MIT Press
- Sane, H. S., Haugstetter, C., & Bortoff, S. A. (2006), Building HVAC control systems-role of controls and optimization, Proceedings of the American Control Conference, 6.
- Suh, W. J., & Park, C. S. (2016). Real-time Optimal Control of Chiller using Genetic Programming, Journal of the Architectural Institute of Korea: Planning & Design, 32(6), 105-112.
- Van Dijk, H., Spiekman, M., & de Wilde, P. (2005). A monthly method for calculating energy performance in the context of European building regulations, Building Simulation, 255-262.
- Wang, H., & Hu, D. (2005). Comparison of SVM and LS-SVM for regression, Proceedings of the International Conference on Neural Networks and Brain, 1, 279-283.
- Xavier-de-Souza, S., Suykens, J. A., Vandewalle, J., & Bolle, D. (2010). Coupled simulated annealing, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(2), 320-335. https://doi.org/10.1109/TSMCB.2009.2020435
- Yao, X. (1999). Evolving artificial neural networks, Proceedings of the IEEE, 87(9), 1423-1447. https://doi.org/10.1109/5.784219
- Zhang, Y., O'Neill, Z., Dong, B., & Augenbroe, G. (2015). Comparisons of inverse modeling approaches for predicting building energy performance, Building and Environment, 86, 177-190. https://doi.org/10.1016/j.buildenv.2014.12.023
- Zhao, H. X., & Magoules, F. (2012). A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews, 16(6), 3586-3592. https://doi.org/10.1016/j.rser.2012.02.049