DOI QR코드

DOI QR Code

Evaluation of Shear Behavior According to Size Effect of Reinforced Concrete Beams Using Recycled Coarse Aggregates

순환굵은골재 콘크리트보의 크기효과에 따른 전단거동 평가

  • 김봉필 (금오공과대학교 건축학부) ;
  • 신우철 (금오공과대학교 건축학부) ;
  • 이호경 (금오공과대학교 건축학부) ;
  • 백승민 (금오공과대학교 건축학부) ;
  • 김우석 (금오공과대학교 건축학부) ;
  • 곽윤근 (금오공과대학교 건축학부)
  • Received : 2016.11.09
  • Accepted : 2017.08.30
  • Published : 2017.10.30

Abstract

In this study, we investigated the size effect in accordance with width-to-depth ratio (1.0, 1.5, 2.0, 2.5, and 3.0) of reinforced concrete beams as well as comparison with two types of beams using natural coarse aggregates (NCAs) and recycled coarse aggregates (RCAs). As a test result, while width-to-depth ratio increased from 1.0 to 1.5, shear strengths of specimens using NCAs and RCAs mostly decreased. Also, the overall reduction ratio was similar to that of NCA specimens by 32% and RCA specimens by 31.8%. The ratio of the experimental value to the theoretical value by the design equation for shear in reinforced concrete by KBC, CEP-FIP, JSCE, and AIJ codes etc. is stable from 1.14 to 1.46.

Keywords

Acknowledgement

Supported by : 금오공과대학교

References

  1. Bazant, Z. P. & Yu, Q. (2005). Designing against size effect on shear strength of reinforced concrete beams without stirrups: I. Formulation, Journal of Structural Engineering, 131(12), 1877-1885. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1877)
  2. Bazant, Z. P. & Yu, Q. (2005). Designing against size effect on shear strength of reinforced concrete beams without stirrups: II. Verification and calibration, Journal of Structural Engineering, 131(12), 1886-1897. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1886)
  3. Bazant, Z. P. (1997). Fracturing Truss Model : Size effect in shear failure of reinforced concrete, Journal of Engineering Mechanics, 123(12), 1276-1288. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1276)
  4. Belgin, C. M. & Sener, S. (2008). Size effect on failure of over-reinforced concrete beams, Engineering Fracture Mechanics 75(8), 2308-2319. https://doi.org/10.1016/j.engfracmech.2007.09.006
  5. Bordelon, A., Cervantes, V., & Roesler, J. R. (2009). Fracture properties of concrete containing recycled concrete aggregates, Magazine of Concrete Research, 61(9), 665-670. https://doi.org/10.1680/macr.2008.61.9.665
  6. Fathifazl, G., Razaqpur, A. G., Burkan Isgor, O., Abbas, A., Fournier, B., & Foo, S. (2010). Shear strength of reinforced recycled concrete beams with stirrups. Magazine of Concrete Research, 62(10), 685-699. https://doi.org/10.1680/macr.2010.62.10.685
  7. Jeong, C. Y., Han, D. S., Kim, S. W., & Kim, K. H. (2011). Experimental study on size effect in shear strength of reinforced recycled coarse aggregate concrete beams, Proceedings of the Korea Concrete Institute, 23(2), 493-494.
  8. Kani, G. N. J. (1967). How safe are our large reinforced concrete beams?, Journal of American Concrete Institute, 64(12), March, 128-141.
  9. Khan, M. S., Prasad, J., & Abbas, H. (2010). Shear strength of RC beams subjected to cyclic thermal loading, Construction and Building Materials, 24, 1869-1877. https://doi.org/10.1016/j.conbuildmat.2010.04.016
  10. Lee, H. K., Gong, H. M., Baek, S. M., Kim, W. S., & Kwak, Y. K. (2015). An experimental study on the size effect of reinforced concrete beams without stirrups using recycled coarse aggregates, Journal of the Architectural Institute of Korea, 17(12), 35-44.
  11. Ministry of Environment (2014), Construction Waste Recycling Promotion Act.
  12. Oreta, A. W. C. (2004). Simulating size effect on shear strength of RC beams without stirrups using neural networks, Engineering Structures, 26, 681-691. https://doi.org/10.1016/j.engstruct.2004.01.009
  13. Park, K. B., Hong, S. J., Choi, H. H., Lee, J. Y., & Lee, J. H. (2015). An excremental study on the size effect of reinforced concrete beams using high strength stirrups, Proceedings of the Korea Concrete Institute, 27(2), 227-228.
  14. Park, K. H. & Yeom, D. W. (1996). Size effect on the shear strength of high strength reinforced concrete short beams without stirrup, Journal of the Architectural Institute of Korea, 16(2), 529-536.
  15. Park, S. S. & Roh, J. W. (2005). An experimental study on the strength of shear capacity of the reinforced concrete deep beam, Journal of Urban Studies, 18, 43-51.
  16. Ravindrarajah, S. & Tam, C. T. (1985). Properties of concrete made with crushed concrete as coarse aggregate, Magazine of Concrete Research, 37(130), 29-38. https://doi.org/10.1680/macr.1985.37.130.29
  17. Rios, R. D. & Riera, J. (2004). Size effects in the analysis of reinforced concrete structures, Engineering Structures, 26, 1115-1125. https://doi.org/10.1016/j.engstruct.2004.03.012
  18. Saouma, V. E., Broz, J. J., Bruhwiler, E., & Boggs, H. L. (1991). Effect of aggregate and specimen size on fracture properties of dam concrete, Journal of Materials in Civil Engineering, 3(3), 204-218. https://doi.org/10.1061/(ASCE)0899-1561(1991)3:3(204)
  19. Sener, S. (1997). Size effect tests of high strength concrete, Journal of Materials in Civil Engineering, 9(1), 46-48. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:1(46)
  20. Sener, S., Bazant, Z. P., & Beeq-Giraudon, E. (1999). Size effect on failure of bond splice of steel bars on concrete beams, Journal of Structural Engineering, 125(6), 653-660. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:6(653)
  21. Soroka, I. & Baum, H. (1994). Influence of specimen size on effect of curing regime on concrete compressive strength, Journal of Materials in Civil Engineering, 6(1), 15-22. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:1(15)
  22. Tan, K. H. & Cheng, G. H. (2006). Size effect on shear strength of deep beams : Investigating with strutand-tie model, Journal of Structural Engineering, 132(5), 673-685. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(673)
  23. Touahamia, M., Sivakumar, V., & McKelvey, D. (2002). Shear strength of reinforced-recycled material. Construction and Building Materials, 16(6), 331-339. https://doi.org/10.1016/S0950-0618(02)00029-6
  24. Wong, M. B. (2005). Size effect on temperatures of structural steel in fire, Journal of Structural Engineering, 131(1), 16-20. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(16)
  25. Yang, K. H., Eun, H. C., & Jung, H. S. (2001). The prediction on the shear strength of reinforced concrete deep beams included size effect. Journal of the Architectural Institute of Korea, 17(12), 35-44.
  26. Yu, Q. & Bazant, Z. P. (2011). Can stirrups suppress size effect on shear strength of RC beams?, Journal of Structural Engineering, 137(5). 607-617. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000295
  27. Zararis, P. D. & Papadakis, G. C. (2001). Diagonal shear failure and size effect in RC beams without web reinforcement, Journal of Structural Engineering, 127(7), 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
  28. Zhang, Z. & Tan, K. H. (2007). Size effect in RC deep beams : Experimental investigation and STM verification, Engineering Structures, 29, 3241-3254. https://doi.org/10.1016/j.engstruct.2007.10.005