DOI QR코드

DOI QR Code

Method development for quantitative analysis of naturally occurring radioactive nuclides in building materials

실내 건축자재 중 천연방사성핵종의 정량분석법 연구

  • Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lee, Hoon (Radiation Safety Division, Korea Foundation Of Nuclear Safety) ;
  • Kim, Chang-Jong (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Jang, Mee (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Park, Ji-Young (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Chung, Kun Ho (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
  • 임종명 (한국원자력연구원 환경방사능평가실) ;
  • 이훈 (한국원자력안전재단 방사선안전부) ;
  • 김창종 (한국원자력연구원 환경방사능평가실) ;
  • 장미 (한국원자력연구원 환경방사능평가실) ;
  • 박지영 (한국원자력연구원 환경방사능평가실) ;
  • 정근호 (한국원자력연구원 환경방사능평가실)
  • Received : 2017.03.17
  • Accepted : 2017.04.14
  • Published : 2017.10.25

Abstract

Naturally occurring radioactive materials (NORMs) increase radiation exposure to the public as these materials are concentrated through artificial manufacturing processes by human activities. This study focuses on the development of a method for the quantitative analysis of $^{232}Th$, $^{235}U$, and $^{238}U$ in building materials. The accuracy and precision of inductively coupled plasma mass spectrometry (ICP-MS) for determination of digestion processes was evaluated for certified reference materials (CRMs) digested using various mixed acid (e.g., aqua regia, hydrofluoric acid, and perchloric acid) digestions and a $LiBO_2$ fusion method. The method validation results reveal that a $LiBO_2$ fusion and $Fe(OH)_3$ co-precipitation should be applied as the optimal sample digestion process for the quantitative analysis of radionuclides in building materials. The radioactivity of $^{232}Th$, $^{235}U$, and $^{238}U$ in a total of 51 building material (e.g., board, brick, cement, paint, tile, and wall paper) samples was quantitatively analyzed using an established process. Finally, the values of $^{238}U$ and $^{232}Th$ radioactivity were comprehensively compared with those from the indirect method using ${\gamma}$-spectrometry.

천연방사성핵종을 함유한 물질들은 인간 활동에 의해 인위적인 조작과정을 거치면서 농축되는 경우 방사선 노출에 따른 위해를 증가시킬 수 있다. 본 연구는 다양한 전처리 방법 및 분석 방법 간 비교를 통해 분석정확도를 평가하고 실내 건축자재 중 $^{232}Th$, $^{235}U$, $^{238}U$의 천연방사성핵종을 분석하기 위한 최적의 분석 방법을 확립하고자 하였다. ICP-MS를 이용한 실내 건축자재 중 천연방사성핵종 분석방법을 확립하기 위하여, 인증표준물질 5종을 왕수, 불산, 과염소산의 습식산화법과 용융법의 전처리법에 따른 U, Th의 분석 정확도 및 정밀도를 평가하였고, 최적의 전처리법으로써 용융법과 $Fe(OH)_3$ 공침법을 선정하였다. 확립된 분석방법을 석고보드, 벽돌, 시멘트, 페인트, 타일과 벽지 총 51 종의 실내 건축자재 시료에 적용하여 천연방사성핵종의 농도를 정량 분석하였다. 또한 동일한 시료에 대해 감마분광분석법 중 간접측정법을 사용하여 $^{238}U$, $^{232}Th$의 농도를 정량하고 ICP-MS 분석 결과와 비교하였다.

Keywords

References

  1. A. S. Paschoa, Appl. Radiat. Isot., 49, 189-196 (1998). https://doi.org/10.1016/S0969-8043(97)00239-X
  2. International Commission on Radiological Protection. 'The 2007 Recommendations of the International Commission on Radiological Protection', ICRP Publication 103, 2007.
  3. Q. H. Hu, J. Q. Weng and J. S. Wang, J. Environ. Radioact., 101, 426-437 (2010). https://doi.org/10.1016/j.jenvrad.2008.08.004
  4. M. Mola, M. Palomo, A. Penalvear, C. Aguilar and F. Borrull, J. Hazard. Mater., 198, 57-64 (2011). https://doi.org/10.1016/j.jhazmat.2011.10.011
  5. F. S. Al-Saleh and G. A. Al-Harshan, J. Environ. Radioact., 99, 1026-1031 (2008). https://doi.org/10.1016/j.jenvrad.2007.12.002
  6. N. Ibrahim, J. Environ. Radioact., 43, 255-258 (1999). https://doi.org/10.1016/S0265-931X(98)00033-2
  7. A. Kumar, M. Kumar, B. Singh and S. Singh, Radiation Measurements, 36, 465-469 (2003). https://doi.org/10.1016/S1350-4487(03)00173-2
  8. D. Amrania and M. Tahtatb, Appl. Radiat. Isot., 54, 687-689 (2001). https://doi.org/10.1016/S0969-8043(00)00304-3
  9. Y. H. Cho, C. J. Kim, J. Y. Yun, D. H. Cho and K. P. Kim, J. Radiat. Prot., 3, 181-190 (2012).
  10. S. N. dos Santos and L. R. F. Alleoni, Water Air Soil Pollut., 224, 1430-1445 (2013). https://doi.org/10.1007/s11270-012-1430-z
  11. M. Chen and L. Q. Ma, Soil Sci. Soc. Am. J., 65, 491-499 (2001). https://doi.org/10.2136/sssaj2001.652491x
  12. Z. Hseu, Z. Chen, C. Tsai, C. Tsui, S. Cheng, C. Liu and H. Lin, Water, air, and Soil Pollut., 141, 189-205 (2002). https://doi.org/10.1023/A:1021302405128
  13. J. Janda, P. Sladek and D. Sas, J. Radioanal. Nucl. Chem., 293, 223-229 (2012). https://doi.org/10.1007/s10967-012-1651-z
  14. J. Mantero, M. Lehritane, S. Hurtado and R. Garcia-Tenorio, J. Radioana. Nucl. Chem., 286, 557-563 (2010). https://doi.org/10.1007/s10967-010-0782-3
  15. J. K. Haken, Ind. Eng. Chem. Prod. Res., 25, 163-171 (1986). https://doi.org/10.1021/i300022a008
  16. H. E. Carter, P. Warwick, J. Cobbb and G. Longworth, Analyst, 124, 271-274 (1999). https://doi.org/10.1039/a809781j
  17. C. J. Brookes, I. G. Betteley and S. M. Loxton, 'Fundamentals of Mathematics and Statistics, Wiley, 1979.
  18. M. Seferinoglu, A. Dirican, P. E. Erden and D. Ericin, Appl. Radiat. Isot., 94, 355-362 (2014). https://doi.org/10.1016/j.apradiso.2014.09.002
  19. International Atomic Energy Agency, 'Extent of Environmental Contamination by naturally occurring radioactive material (NORM) and technological options for mitigation', Tech report 419, 2003.
  20. N. M. Hassan, T. Ishikawa, M. Hosoda, A. Sorimachi, S. Tokonami, Ma. Fukushi and S. K. Sahoo, J. Radioanal. Nucl. Chem., 283, 15-21 (2009).
  21. Y. Y. Ji, K. H. Jung, J. M. Lim, C. J. Kim, M. Jang, M. J. Kang, S. T. Park, Z. H. Woo, B. C. Koo and B. K. Seo, J. Nucl. Fuel Cycle Waste Techno., 12, 97-105 (2014). https://doi.org/10.7733/jnfcwt.2014.12.2.97
  22. J. Y. Park, J. M. Lim, Y. Y. Ji, C. S. Lim, B. U. Jang, K. H. Chung, W. Lee and M. J. Kang, J. Radiat. Prot. Res., 41(4), 359-367 (2017). https://doi.org/10.14407/jrpr.2016.41.4.359
  23. International Atomic Energy Agency, 'Extent of environmental contamination by Naturally Occurring Radioactive Material (NORM) and technological options for mitigation', 2003.