DOI QR코드

DOI QR Code

실내 라돈가스 제거를 위한 Pitch계 활성탄소섬유 제조 및 특성연구

Synthesization and Characterization of Pitch-based Activated Carbon Fiber for Indoor Radon Removal

  • 투고 : 2017.07.21
  • 심사 : 2017.09.14
  • 발행 : 2017.09.30

초록

본 연구에서는 열분해잔사유(Pyrolysis Fuel Oil, PFO)를 이용한 Pitch계 활성탄소섬유를 제조하였다. 제조한 Pitch안정화 섬유의 탄화 및 활성화 온도를 850, 880, $900^{\circ}C$로 달리하여 각각 다른 샘플의 기공형성에 대한 영향을 알아보기 위해 BET와 SEM을 이용하여 비교 분석하였다. 세 가지 샘플 ACF850, ACF880, ACF900를 분석한 결과 ACF880의 비표면적과 미세기공표면적이 각각 $1,420m^2{\cdot}g^{-1}$, $1,270m^2{\cdot}g^{-1}$으로 가장 높았으며, 외부비표면적과 BJH흡착누적공극표면에서 가장 낮은 중기공표면적이 도출되었다. 또한 $N_2$가스 등온흡착곡선을 분석한 결과, 미세기공의 분포가 균일한 것을 확인할 수 있었다. ACF880은 흡착률 및 흡착속도에서도 가장 높은 결과값을 보이며, 흡착속도는 미세기공표면적과 비례하며 중기공표면적과 반비례함을 알 수 있었다. 제조한 Pitch계 활성탄소섬유를 라돈 연속측정방법을 통해 48시간 동안 측정한 결과 샘플 모두 라돈 흡착성능을 보였다. 제조한 샘플 중 ACF880이 34.0%로 가장 높은 흡착률을 보였으며, ACF850이 29.5%로 가장 낮은 흡착률을 나타내었다. 이는 비표면적이 높을수록 흡착률이 높아지는 것을 알 수 있었다. 이를 선형회귀선 기울기로 환산하여 흡착속도로 확인한 결과 ACF880이 -1.89로 가장 빠른 것을 확인하였으며, ACF900이 -1.48로 가장 낮은 흡착속도를 보여 미세기공표면적이 높을수록, 중기공표면적이 낮을수록 흡착속도가 증가하는 것을 알 수 있었다.

In this study, pitch-based activated carbon fibers (ACFs) were modified with pyrolysis fuel oil (PFO). Carbonized ACF samples were activated at $850^{\circ}C$, $880^{\circ}C$ and $900^{\circ}C$. A scanning electron microscope (SEM) and a BET surface area apparatus were employed to evaluate the indoor radon removal of each sample. Among three samples, the BET surface area and micropore area of ACF880 recorded the highest value with $1,420m^2{\cdot}g^{-1}$ and $1,270m^2{\cdot}g^{-1}$. Moreover, ACF880 had the lowest external surface area and BJH adsorption cumulative surface area of pores with $151m^2{\cdot}g^{-1}$ and $35.5m^2{\cdot}g^{-1}$. This indicates that satisfactory surface area depends on the appropriate temperature. With the above scope, ACF880 also achieved the highest radon absorption rate and speed in comparison to other samples. Therefore, we suggest that the optimum activation temperature for PFO containing ACFs is $880^{\circ}C$ for effective indoor radon adsorption.

키워드

참고문헌

  1. B.F. Yu, Z.B. Hu, M. Liu, H.L. Yang, Q.X. Kong, and Y.H. Liu, "Review of research on air-conditioning systems and indoor air quality control for human health", International journal of refrigeration, 32(1), 3-20 (2009). https://doi.org/10.1016/j.ijrefrig.2008.05.004
  2. E.K. Lee, B.D. Lee, and J.C. Park, "A study on the indoor air quality in newly-constructed apartment houses", In Proceeding of annual conference of the architectural institute of Korea planning & Design, Architectural Institute of Korea, AIK, 311-316 (1994).
  3. L. Font, C. Baixeras, and V. Moreno, "Indoor radon levels in underground workplaces of Catalonia, Spain" , Radiation Measurements, 43, 467-470 (2008). https://doi.org/10.1016/j.radmeas.2007.11.066
  4. P.K. Hopke (Ed.). "Radon and its decay products: Occurrence, properties, and health effects", American Chemical Society (1987).
  5. K.H. Lee, "A Study Radon Removal Efficiency using nano-size carbon colloid [dissertation]", [WonJu]: Yonsei University (2012).
  6. J. P. David and S. P. Jerome. Environmental Protection Agency, 54-57, (2003), Assessment of Risks from Radon in Homes.
  7. Awhida A., Ujic P., Vukanac I., Durasevic M., Kandic A., Celikovic I., and Kolarz P., "Novel method of measurement of radon exhalation from building materials", Journal of Environmental Radioactivity, 164, 337-343 (2016). https://doi.org/10.1016/j.jenvrad.2016.08.009
  8. H. Zeeb and F. Shannoun. World Health Organization, 38-39, (2009), "WHO handbook on indoor radon: a public health perspective. World Health Organization."
  9. National Research Council, Health risks of radon and other internally deposited alpha-emitters: BEIR IV (Vol. 4), National Academies Press, Washington, D.C. (1988).
  10. I.C. Im, "Radon concentration measurement at general house in Pusan area" Journal of radiological science and technology, 27(2), 29-33 (2004).
  11. L. Sathish A., K. Nagaraja, H. C. Ramanna, and S. Sundareshan, "Volumetric Variations of Indoor Radon and Thoron", Arabian Journal for Science and Engineering, 36(4), 671-676 (2011). https://doi.org/10.1007/s13369-011-0053-9
  12. International Commission on Radiological Protection, "limits for inhalation of radon daughters by workers", ICRP publication 32, Annals of the ICRP (1981).
  13. M. Rafique, S.U. Rahman, T. Mahmood, S. Rahman, and S.U. Rehman, "Radon exhalation rate from soil, sand, bricks, and sedimentary samples collected from Azad Kashmir, Pakistan", Russian Geology and Geophysics, 52(4), 450-457 (2011). https://doi.org/10.1016/j.rgg.2011.03.007
  14. L. Font and C. Baixeras, "The RAGENA dynamic model of radon generation, entry and accumulation indoors", Science of the total environment, 307(1), 55-69 (2003). https://doi.org/10.1016/S0048-9697(02)00462-X
  15. J.W. Gofman, "Radiation and human health", United States: Sierra Club Books, San Francisco, CA (1981).
  16. D.E. Tchorz-Trzeciakiewicz and M. Klos, "Factors affecting atmospheric radon concentration, human health", Science of The Total Environment, 584, 911-920 (2017).
  17. S.M.J. Mortazavi, S. Mehdizadeh, M. Zehtabian, and S. Sina, "Development of an economical radonresistant construction technique that is applicable in national radon-reduction programmes", International Journal of Low Radiation, 6(2), 113-118 (2009). https://doi.org/10.1504/IJLR.2009.028531
  18. J.S. Paschalides, G.S. Marinakis, and N.P. Petropoulos, "Passive, integrated measurement of radon using 5A synthetic zeolite and blue silica gel", Applied Radiation and Isotopes, 68(1), 155-163 (2010). https://doi.org/10.1016/j.apradiso.2009.08.017
  19. I. Bikit, D. Mrdja, K. Bikit, S. Grujic, D. Knezevic, S. Forkapic, and U. Kozmidis-Luburic, "Radon adsorption by zeolite", Radiation Measurements, 72, 70-74 (2015). https://doi.org/10.1016/j.radmeas.2014.12.001
  20. H. Rong, Z. Ryu, J. Zheng, and Y. Zhang, "Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde", Journal of colloid and interface science, 261(2), 207-212 (2003). https://doi.org/10.1016/S0021-9797(03)00099-7
  21. S.H. Yoon, Y. Korai, and I. Mochida, "Assessment and optimization of the stabilization process of mesophase pitch fibers by thermal analysis", Carbon, 32(2), 281-287 (1994). https://doi.org/10.1016/0008-6223(94)90191-0
  22. P. Dwivedi, V. Gaur, A. Sharma, and N. Verma, "Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber", Separation and Purification Technology, 39(1), 23-37 (2004). https://doi.org/10.1016/j.seppur.2003.12.016
  23. J.S. Hwang, C.H. Lee, K.H. Cho, M.S. Kim, C.J. Kim, S.K. Ryu, and B.S. Rhee, "Preparation of anisotropic/isotropic pitches from NCC-PFO", Korean Chemical Engineering Research, 33(5), 551-551 (1995).
  24. H. El Akrami A., M.F. Yardim, and E. Ekinci, "Preparation and characterization of Raman-Dincer crude oil derived pitches for production of stabilized fibers", Fuel, 79(5), 497-504 (2000). https://doi.org/10.1016/S0016-2361(99)00148-9
  25. B.K. Choi, L.K. Kwac, K.E. Yoon, M.K. Seo, and S.J. Park, "Preparation and Characterization of Coaltar Pitch-based Activated Carbon Fibers (I)-Effect of Steam Activation Temperature on Textural Properties of Activated Carbon Fibers", Textile Science and Engineering, 51(4), 174-179 (2014). https://doi.org/10.12772/TSE.2014.51.174
  26. J. Lee and Y. Kim, "The Adsorption Characteristics by the Optimum Activation Process of PAN-based Carbon Fiber and $SO_2$ Adsorption Characteristics by the Impregnated Nanoparticles", J. of korean industrial and engineering chemistry, 17(5), 532 (2006).
  27. M.H. Joo, M.S. Song, S.G. Im, H.D. Kim, C.S. An, D.C. Jang, and S.B. Seo, "Analytical measurement of lardon gas reduction using synthetic zeolite and palm activated carbon", Proc. of the Korean Radioactive waste Society 2014 Autumn Conference, 12(2), 453-454 (2014).

피인용 문헌

  1. 프러시안 블루 고정화에 따른 133Cs의 흡착거동 모델링 vol.36, pp.1, 2017, https://doi.org/10.14346/jkosos.2021.36.1.80