참고문헌
- Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Amara, K., Tounsi, A. and Mechab, I. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80, 195412. https://doi.org/10.1103/PhysRevB.80.195412
- Azimi, M., Mirjavadi, S.S., Shafiei N. and Hamouda, A. (2017), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123, 104.
- Batra, R., Qian, L. and Chen, L. (2004), "Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials", J. Sound Vib., 270, 1074-1086. https://doi.org/10.1016/S0022-460X(03)00625-4
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E. and Mahmoud, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi A., Beg, O.A. and Mahmoud, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Daneshmehr, A. and Rajabpoor, A. (2014), "Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Eringen, A. (1976), Nonlocal polar field models, Academic, New York.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Heireche, H., Tounsi, A., Benhassaini, H., Benzair, A., Bendahmane, M., Missouri, M. and Mokadem, S. (2010), "Nonlocal elasticity effect on vibration characteristics of protein microtubules", Physica E: Low-Dimensional Syst. Nanostruct., 42, 2375-2379. https://doi.org/10.1016/j.physe.2010.05.017
- Janghorban, M. and Nami, M. (2015), "Wave propagation in rectangular nanoplates based on a new strain gradient elasticity theory with considering in-plane magnetic field", Iranian J. Mater. Form., 2(2), 35-43.
- Janghorban, M. and Nami, M.R. (2016), "Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second order shear deformation theory", Mech. Adv. Mater. Struct., 24(6), 458-468.
- Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421. https://doi.org/10.1142/S0217984916504212
- Karami, B., Shahsavari, D. and Janghorban, M. (2017), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 1-11.
- Kraus, J.D. (1984), Electromagnetic, McGrawHill.
- Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012
- Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112(1), 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044
- Li, L., Hu, Y. and Ling, L. (2016a), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
- Li, L., Li, X. and Hu, Y. (2016b), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Mahmoud, S., Abd-alla A., Tounsi, A. and Marin, M. (2015), "The problem of wave propagation in magneto-rotating orthotropic non-homogeneous medium", J. Vib. Control, 21, 3281-3291. https://doi.org/10.1177/1077546314521443
- Mahmoud, S., Tounsi, A., Marin, M., Ali, S. and Ali, A. (2014), "Effect of magnetic field and initial stress on radial vibrations in rotating orthotropic homogeneous hollow sphere", J. Comput. Theor. Nanosci., 11(6), 1524-1529. https://doi.org/10.1166/jctn.2014.3529
- Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017), "Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations", Physica B: Condensed Matter., 521, 102-111. https://doi.org/10.1016/j.physb.2017.06.058
- Murmu, T., Adhikari, S. and Mccarthy, M. (2014), "Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory", J. Comput. Theor. Nanosci., 11, 1230-1236. https://doi.org/10.1166/jctn.2014.3487
- Murmu, T., Mccarthy, M. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach", J. Sound Vib., 331(23), 5069-5086. https://doi.org/10.1016/j.jsv.2012.06.005
- Murmu, T., Mccarthy, M. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded singlelayer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005
- Nami, M.R. and Janghorban, M. (2014a), "Static analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory", Iranian J. Mater. Form., 1(2), 1-13.
- Nami, M.R. and Janghorban, M. (2014b), "Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress", Mod. Phy. Lett. B, 28(3), 1450021. https://doi.org/10.1142/S0217984914500213
- Nami, M.R. and Janghorban, M. (2015), "Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory", J. Braz. Soc. Mech. Sci. Eng., 37(1), 313-324. https://doi.org/10.1007/s40430-014-0169-4
- Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci. Technol., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001
- Papargyri-beskou, S. and Beskos, D. (2008), "Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates", Arch. Appl. Mech., 78(8), 625-635. https://doi.org/10.1007/s00419-007-0166-5
- Peddieson, J., Buchanan, G.R. and Mcnitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Prince, E., Finger, L. and Konnert, J. (2006), "Constraints and restraints in refinement. International Tables for Crystallography Volume C: Mathematical, physical and chemical tables. Springer.
- Sadd, M.H. (2009), Elasticity: theory, applications, and numerics, Academic Press.
- Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Braz. Soc. Mech. Sci. Eng.. 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0
- Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8).
- Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82(4), 535-537. https://doi.org/10.1063/1.1539929
- Sheehan, P.E. and Lieber, C.M. (1996), "Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy", Science, 272(5265), 1158. https://doi.org/10.1126/science.272.5265.1158
- Shen, L., Shen, H.S. and Zhang, C.L. (2010), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comput. Mater. Sci., 48(3), 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013
- Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010a), "Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress", Appl. Phys. A: Mater. Sci. Process., 99(4), 907-911. https://doi.org/10.1007/s00339-010-5666-4
- Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010b), "Scale effects on the longitudinal wave propagation in nanoplates", Physica E: Low-dimensional Syst. Nanostruct., 42(5), 1356-1360. https://doi.org/10.1016/j.physe.2009.11.036
- Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A, 123, 388. https://doi.org/10.1007/s00339-017-1007-1
- Yakobson, B.I. and Smalley, R.E. (1997), "Fullerene nanotubes: C 1,000,000 and beyond: Some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family", American Scientist, 85(4), 324-337.
- Zang J., Fang, B., Zhang, Y.W., Yang, T.Z. and Li, D.H. (2014), "Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory", Physica E: Low-dimensional Syst. Nanostruct., 63, 147-150. https://doi.org/10.1016/j.physe.2014.05.019
- Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory", Microfluidics and Nanofluidics, 21, 85. https://doi.org/10.1007/s10404-017-1918-3
- Zhang, L., Liu, J., Fang, X. and Nie, G. (2014a), "Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates", Eur. J. Mech. -A/Solids, 46, 22-29. https://doi.org/10.1016/j.euromechsol.2014.01.005
- Zhang, L., Liu, J., Fang, X. and Nie, G. (2014b), "Surface effect on size-dependent wave propagation in nanoplates via nonlocal elasticity", Philos. Mag., 94(18), 2009-2020. https://doi.org/10.1080/14786435.2014.904057
- Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
피인용 문헌
- A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law vol.15, pp.5, 2017, https://doi.org/10.1108/wje-11-2017-0357
- Multiscale modelling approach to determine the specific heat of cementitious materials vol.23, pp.5, 2017, https://doi.org/10.1080/19648189.2018.1443157
- Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2017, https://doi.org/10.12989/sem.2019.70.4.407
- A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2017, https://doi.org/10.12989/scs.2019.31.5.503
- Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2017, https://doi.org/10.12989/scs.2019.33.5.699
- Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
- A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
- On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2017, https://doi.org/10.12989/was.2019.29.6.371
- Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2017, https://doi.org/10.12989/scs.2021.38.1.033
- Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis vol.11, pp.3, 2017, https://doi.org/10.12989/acc.2021.11.3.255
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.263
- Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.271
- On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389