DOI QR코드

DOI QR Code

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang (Key Laboratory of Road Construction Technology & Equipment of Chang'an University) ;
  • Song, Xuding (Key Laboratory of Road Construction Technology & Equipment of Chang'an University)
  • Received : 2017.01.06
  • Accepted : 2017.07.12
  • Published : 2017.10.30

Abstract

To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.

Keywords

Acknowledgement

Supported by : Central Universities of China

References

  1. Allen H. (1969), Analysis and design of structural sandwich panels, Pergamom, Oxford.
  2. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal Foams: A Design Guide, Butterworth-Heinemann, Boston.
  3. Banhart, J. (2001), "Manufacture characterisation and application of cellular metals and metal foams", Prog. Mater. Sci., 46(6), 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5
  4. Baumeister, J., Banhart, M. and Weber, M. (1997), "Aluminum foams for transport industry", Mater. Des., 18(4-6), 217-220. https://doi.org/10.1016/S0261-3069(97)00050-2
  5. Crupi, V., Kara, E., Epasto, G., Guglielmino, E. and Aykul, H. (2015), "Prediction model for the impact response of glass fibre reinforced aluminum foam sandwiches", Int. J. Impact Eng., 77, 97-107. https://doi.org/10.1016/j.ijimpeng.2014.11.012
  6. D'Alessandro, V., Petrone, G., De Rosa, S. and Franco, F. (2014), "Modelling of aluminum foam sandwich panels", Smart Struct. Syst., 13(4), 615-636. https://doi.org/10.12989/sss.2014.13.4.615
  7. Degischer, H. and Kriszt, B. (2002), Handbook of cellular metals: production, processing, application, In: Cambridge solid state science series, Wiley-VCH Verlag BmbH & Co. KGaA.
  8. Dou, R., Qiu, S., Ju, Y. and Hu, Y. (2016), "Simulation of compression behavior and strain-rate effect for aluminum foam sandwich panels", Comput. Mater. Sci., 112, 205-209. https://doi.org/10.1016/j.commatsci.2015.10.032
  9. Duarte, I., Vesenjak, M. and Krstulovic-Opara, L. (2014), "Variation of quasi-static and dynamic compressive properties in a single aluminum foam block", Mater. Sci. Eng., 616, 171-182. https://doi.org/10.1016/j.msea.2014.08.002
  10. Gibson, L.J. and Ashby, M.F. (1999), Cellular solids: structure and properties (2nd Editon), Cambridge University Press, Cambridge.
  11. Huang, L., Wang, H., Yang, D.H., Ye, F. and Lu, Z.P. (2012), "Effects of scandium additions on mechanical properties of cellular Al-based foams", Intermetallics, 28, 71-76. https://doi.org/10.1016/j.intermet.2012.03.050
  12. Kabir, K., Vodenitcharova, T. and Hoffman, M. (2015), "Response of aluminum foam-cored sandwich panels to bending load", Compos. Part B, 64, 24-32.
  13. Li, Z., Chen, X., Jiang, B. and Lu, F. (2016), "Local indentation of aluminum foam core sandwich beams at elevated temperatures", Compos. Struct., 145,142-148. https://doi.org/10.1016/j.compstruct.2016.02.083
  14. Liu, H., Cao, Z.K., Yao, G.C., Luo, H.J. and Zu, G.Y. (2013), "Performance of aluminum foam-steel panel sandwich composites subjected to blast loading", Mater. Des., 47, 483-488. https://doi.org/10.1016/j.matdes.2012.12.003
  15. Matsumotoa, R., Tsuruokaa, H., Otsub, M. and Utsunomiya, H. (2015), "Fabrication of skin layer on aluminum foam surface by friction stirincremental forming and its mechanical properties", J. Mater. Process. Tech., 218, 23-31. https://doi.org/10.1016/j.jmatprotec.2014.11.030
  16. Nammi, S.K., Myler, P. and Edwards, G. (2010), "Finite element analysis of closed-cell aluminum foam under quasi-static loading", Mater. Des., 31(2), 712-722. https://doi.org/10.1016/j.matdes.2009.08.010
  17. Plantema, F. (1996), Sandwich construction, Wiley, New York.
  18. Qin, Q., Zhang, J., Wang, Z., Li, H. and Guo, D. (2014), "Indentation of sandwich beams with metal foam core", T. Nonferr. Metal. Soc. China, 24(8), 2440-2446. https://doi.org/10.1016/S1003-6326(14)63368-9
  19. Rajaneesh, A., Sridhar, I. and Rajendran, S. (2012), "Impact modeling of foam cored sandwich plates with ductile or brittle faceplates", Compos. Struct., 94(5), 1745-1754. https://doi.org/10.1016/j.compstruct.2011.12.021
  20. Styles, M., Compston, P. and Kalyanasundaram, S. (2007), "The effect of core thickness on the flexural behavior of aluminum foam sandwich structures", Compos. Struct., 80, 532-538. https://doi.org/10.1016/j.compstruct.2006.07.002
  21. Sun, Z., Jeyaraman, J., Sun, S., Hu, X. and Chen, H. (2012), "Carbon-fiber aluminum-foam sandwich with short aramidfiber interfacial toughening", Compos.: Part A, 43(11), 2059-2064. https://doi.org/10.1016/j.compositesa.2012.06.002
  22. Vodenitcharova, T., Kabir, K. and Hoffman, M. (2012), "Indentation of metallic foam core sandwich panels with soft aluminium face sheets", Mater. Sci. Eng., 558, 175-185. https://doi.org/10.1016/j.msea.2012.07.108
  23. Wang, N., Xiang, C., Ao, L., Li, Y., Zhang, H. and Liu, Y. (2016), "Three-point bending performance of a new aluminum foam composite structure", T. Nonferr. Metal. Soc. China, 26(2), 359-368. https://doi.org/10.1016/S1003-6326(16)64088-8
  24. Xie, Z., Zheng, Z. and Yu, J. (2013), "Localized indentation of sandwich panels with metallic foam core: Analytical models for two types of indenters", Compos.: Part B, 44(1), 212-217. https://doi.org/10.1016/j.compositesb.2012.05.046
  25. Yan, C. and Song, X. (2016), "Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich", Steel Compos. Struct., 21(5), 1145-1156. https://doi.org/10.12989/scs.2016.21.5.1145
  26. Zu, G., Song, B., Zhong, Z., Li, X., Mu, Y. and Yao, G. (2012), "Static three-point bending behavior of aluminum foam sandwich", J. Alloy. Compd., 540, 275-278. https://doi.org/10.1016/j.jallcom.2012.06.079

Cited by

  1. Damping Energy Dissipation and Parameter Identification of the Bellows Structure Covered with Elastic-Porous Metal Rubber vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/8813099