Acknowledgement
Supported by : Central Universities of China
References
- Allen H. (1969), Analysis and design of structural sandwich panels, Pergamom, Oxford.
- Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal Foams: A Design Guide, Butterworth-Heinemann, Boston.
- Banhart, J. (2001), "Manufacture characterisation and application of cellular metals and metal foams", Prog. Mater. Sci., 46(6), 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5
- Baumeister, J., Banhart, M. and Weber, M. (1997), "Aluminum foams for transport industry", Mater. Des., 18(4-6), 217-220. https://doi.org/10.1016/S0261-3069(97)00050-2
- Crupi, V., Kara, E., Epasto, G., Guglielmino, E. and Aykul, H. (2015), "Prediction model for the impact response of glass fibre reinforced aluminum foam sandwiches", Int. J. Impact Eng., 77, 97-107. https://doi.org/10.1016/j.ijimpeng.2014.11.012
- D'Alessandro, V., Petrone, G., De Rosa, S. and Franco, F. (2014), "Modelling of aluminum foam sandwich panels", Smart Struct. Syst., 13(4), 615-636. https://doi.org/10.12989/sss.2014.13.4.615
- Degischer, H. and Kriszt, B. (2002), Handbook of cellular metals: production, processing, application, In: Cambridge solid state science series, Wiley-VCH Verlag BmbH & Co. KGaA.
- Dou, R., Qiu, S., Ju, Y. and Hu, Y. (2016), "Simulation of compression behavior and strain-rate effect for aluminum foam sandwich panels", Comput. Mater. Sci., 112, 205-209. https://doi.org/10.1016/j.commatsci.2015.10.032
- Duarte, I., Vesenjak, M. and Krstulovic-Opara, L. (2014), "Variation of quasi-static and dynamic compressive properties in a single aluminum foam block", Mater. Sci. Eng., 616, 171-182. https://doi.org/10.1016/j.msea.2014.08.002
- Gibson, L.J. and Ashby, M.F. (1999), Cellular solids: structure and properties (2nd Editon), Cambridge University Press, Cambridge.
- Huang, L., Wang, H., Yang, D.H., Ye, F. and Lu, Z.P. (2012), "Effects of scandium additions on mechanical properties of cellular Al-based foams", Intermetallics, 28, 71-76. https://doi.org/10.1016/j.intermet.2012.03.050
- Kabir, K., Vodenitcharova, T. and Hoffman, M. (2015), "Response of aluminum foam-cored sandwich panels to bending load", Compos. Part B, 64, 24-32.
- Li, Z., Chen, X., Jiang, B. and Lu, F. (2016), "Local indentation of aluminum foam core sandwich beams at elevated temperatures", Compos. Struct., 145,142-148. https://doi.org/10.1016/j.compstruct.2016.02.083
- Liu, H., Cao, Z.K., Yao, G.C., Luo, H.J. and Zu, G.Y. (2013), "Performance of aluminum foam-steel panel sandwich composites subjected to blast loading", Mater. Des., 47, 483-488. https://doi.org/10.1016/j.matdes.2012.12.003
- Matsumotoa, R., Tsuruokaa, H., Otsub, M. and Utsunomiya, H. (2015), "Fabrication of skin layer on aluminum foam surface by friction stirincremental forming and its mechanical properties", J. Mater. Process. Tech., 218, 23-31. https://doi.org/10.1016/j.jmatprotec.2014.11.030
- Nammi, S.K., Myler, P. and Edwards, G. (2010), "Finite element analysis of closed-cell aluminum foam under quasi-static loading", Mater. Des., 31(2), 712-722. https://doi.org/10.1016/j.matdes.2009.08.010
- Plantema, F. (1996), Sandwich construction, Wiley, New York.
- Qin, Q., Zhang, J., Wang, Z., Li, H. and Guo, D. (2014), "Indentation of sandwich beams with metal foam core", T. Nonferr. Metal. Soc. China, 24(8), 2440-2446. https://doi.org/10.1016/S1003-6326(14)63368-9
- Rajaneesh, A., Sridhar, I. and Rajendran, S. (2012), "Impact modeling of foam cored sandwich plates with ductile or brittle faceplates", Compos. Struct., 94(5), 1745-1754. https://doi.org/10.1016/j.compstruct.2011.12.021
- Styles, M., Compston, P. and Kalyanasundaram, S. (2007), "The effect of core thickness on the flexural behavior of aluminum foam sandwich structures", Compos. Struct., 80, 532-538. https://doi.org/10.1016/j.compstruct.2006.07.002
- Sun, Z., Jeyaraman, J., Sun, S., Hu, X. and Chen, H. (2012), "Carbon-fiber aluminum-foam sandwich with short aramidfiber interfacial toughening", Compos.: Part A, 43(11), 2059-2064. https://doi.org/10.1016/j.compositesa.2012.06.002
- Vodenitcharova, T., Kabir, K. and Hoffman, M. (2012), "Indentation of metallic foam core sandwich panels with soft aluminium face sheets", Mater. Sci. Eng., 558, 175-185. https://doi.org/10.1016/j.msea.2012.07.108
- Wang, N., Xiang, C., Ao, L., Li, Y., Zhang, H. and Liu, Y. (2016), "Three-point bending performance of a new aluminum foam composite structure", T. Nonferr. Metal. Soc. China, 26(2), 359-368. https://doi.org/10.1016/S1003-6326(16)64088-8
- Xie, Z., Zheng, Z. and Yu, J. (2013), "Localized indentation of sandwich panels with metallic foam core: Analytical models for two types of indenters", Compos.: Part B, 44(1), 212-217. https://doi.org/10.1016/j.compositesb.2012.05.046
- Yan, C. and Song, X. (2016), "Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich", Steel Compos. Struct., 21(5), 1145-1156. https://doi.org/10.12989/scs.2016.21.5.1145
- Zu, G., Song, B., Zhong, Z., Li, X., Mu, Y. and Yao, G. (2012), "Static three-point bending behavior of aluminum foam sandwich", J. Alloy. Compd., 540, 275-278. https://doi.org/10.1016/j.jallcom.2012.06.079
Cited by
- Damping Energy Dissipation and Parameter Identification of the Bellows Structure Covered with Elastic-Porous Metal Rubber vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/8813099