DOI QR코드

DOI QR Code

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Received : 2017.04.15
  • Accepted : 2017.07.10
  • Published : 2017.10.30

Abstract

In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Keywords

References

  1. Alibeigloo, A. (2016), "Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel subjected to thermo mechanical load", Compos. Part B, 87, 214-226. https://doi.org/10.1016/j.compositesb.2015.09.060
  2. Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct., 106, 873-881. https://doi.org/10.1016/j.compstruct.2013.07.002
  3. Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method", Acta Mech., 219(3-4), 281-290. https://doi.org/10.1007/s00707-011-0448-4
  4. Ghadiri Rad, M.H., Shahabian, F. and Hosseini, S.M. (2015), "A meshless local Petrov - Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder", Acta Mech., 1513, 1497-1513.
  5. Golbahar Haghighi, M.R., Eghtesad, M., Malekzadeh, P. and Necsulescu, D.S. (2009), "Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates", Energ. Convers.Manage., 50(3), 450-457. https://doi.org/10.1016/j.enconman.2008.11.006
  6. Hetnarski, R.B. and Eslami, M.R. (2009), Thermal stresses- advanced theory and applications, In: The Netherlands: Springer.
  7. Kundalwal, S. and Ray, M. (2013), "Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites", J. Appl. Mech., 80(2), 21010. https://doi.org/10.1115/1.4007722
  8. Kundalwal, S.I. and Meguid, S.A. (2015), "Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mechanica 226: 2035-2052. https://doi.org/10.1007/s00707-014-1297-8
  9. Kundalwal SI and Ray MC (2011) Micromechanical analysis of fuzzy fiber reinforced composites", Int. J. Mech. Mater. Des., 7(2), 149-166. https://doi.org/10.1007/s10999-011-9156-4
  10. Kundalwal, S.I. and Ray, M.C. (2014), "Improved thermoelastic coefficients of a novel short fuzzy fiber-reinforced composite with wavy carbon nanotubes", J. Mech. Mater. Struct., 9(1), 1-25. https://doi.org/10.2140/jomms.2014.9.1
  11. Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2014), "Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes", Int. J. Heat Mass Tran., 72, 440-451. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.025
  12. Lancaster, P. and Salkauskas, K. (1981), "Surface generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  13. Lei, Z.X., Zhang, L.W., Liew, K.M.and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  14. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002
  15. Mokashi, V., Qian, D. and Liu, Y. (2007), "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics", Compos. Sci. Technol., 67(3-4), 530-540. https://doi.org/10.1016/j.compscitech.2006.08.014
  16. Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
  17. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277
  18. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2017), "Vibrational behavior of sandwich plates with functionally graded wavy carbon nanotube-reinforced face sheets resting on Pasternak elastic foundation", J. Vib. Control, DOI: 10.1177/1077546316686227
  19. Moradi-Dastjerdi R and Payganeh G (2017a) Thermoelastic Vibration Analysis of Functionally Graded Wavy Carbon Nanotube-Reinforced Cylinders. Polymer Composites. DOI: 10.1002/pc.24278.
  20. Moradi-Dastjerdi, R. and Payganeh, G. (2017b), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., 24(3), 359-367. https://doi.org/10.12989/scs.2017.24.3.359
  21. Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22, 1062-1075. https://doi.org/10.1177/1077546314539368
  22. Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2016), "Resonance in functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube", Polym. Compos., DOI: 10.1002/pc.24045
  23. Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B: Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028
  24. Pourasghar, A., Moradi-Dastjerdi, R., Yas M.H., Ghorbanpour Arani, A. and Kamarian, S. (2016), "Three-dimensional analysis of carbon nanotube- reinforced cylindrical shells With temperature- dependent properties under thermal environment", Polym. Composit., DOI: 10.1002/pc.24046
  25. Qian, D., Dickey, E., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500
  26. Ray, M.C. and Kundalwal, S.I. (2014), "A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes", Eur. J. Mech. A-Solid, 44, 41-60. https://doi.org/10.1016/j.euromechsol.2013.10.001
  27. Shariyat, M., Khaghani, M. and Lavasani, S.M.H. (2010), "Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperaturedependent material properties", Eur. J. Mech. A-Solid, 29(3), 378-391. https://doi.org/10.1016/j.euromechsol.2009.10.007
  28. Shen, H. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  29. Shen, H. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments Part I : Axiallyloaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011
  30. Sladek, J., Sladek, V., Hellmich, C.H. and Eberhardsteiner, J. (2007), "Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov - Galerkin method", Comput. Mech., 39(3), 323-333. https://doi.org/10.1007/s00466-006-0031-3
  31. Sofiyev, A.H. (2010), "Dynamic response of an FGM cylindrical shell under moving loads", Compos. Struct., 93(1), 58-66. https://doi.org/10.1016/j.compstruct.2010.06.015
  32. Tahouneh, V. and Naei, M.H. (2016), "3D free vibration analysis of elastically supported thick nanocomposite curved panels with finite length and different boundary conditions via 2-D GDQ method", Mech. Adv. Mater. Struct., 23(10), 1216-1235. https://doi.org/10.1080/15376494.2015.1068402
  33. Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Model., 36(4), 1371-1394. https://doi.org/10.1016/j.apm.2011.08.037
  34. Yazdchi, K. and Salehi, M. (2011), "The effects of CNT waviness on interfacial stress transfer characteristics of CNT / polymer composites", Compos. Part A, 42(10), 1301-1309. https://doi.org/10.1016/j.compositesa.2011.05.013
  35. Zhang, L.W., Xiao, L.N., Zou, G.L. and Liew, K.M. (2016), "Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method", Compos. Struct., 148, 144-154. https://doi.org/10.1016/j.compstruct.2016.04.006
  36. Zhao, X. and Liew, K.M. (2010), "A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels", Comput. Mech., 45(4), 297-310. https://doi.org/10.1007/s00466-009-0446-8
  37. Zhu, R., Pan, E. and Roy, A. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A., 447(1-2), 51-57. https://doi.org/10.1016/j.msea.2006.10.054

Cited by

  1. Stress distributions in nanocomposite sandwich cylinders reinforced by aggregated carbon nanotube vol.40, pp.suppl2, 2017, https://doi.org/10.1002/pc.25206
  2. Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.529
  3. Low-velocity impact response of nanotube-reinforced composite sandwich curved panels vol.44, pp.11, 2017, https://doi.org/10.1007/s12046-019-1214-x
  4. Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces vol.136, pp.6, 2017, https://doi.org/10.1140/epjp/s13360-021-01632-4
  5. Nonlinear Damping and Forced Response of Laminated Composite Cylindrical Shells with Inherent Material Damping vol.13, pp.5, 2017, https://doi.org/10.1142/s1758825121500605
  6. Combined Damage Influence Prediction of Curved Composite Structural Responses Using VCCT Technique and Experimental Verification vol.13, pp.8, 2017, https://doi.org/10.1142/s1758825121500861
  7. Damped harmonic vibrations of axisymmetric graphene‐enhanced cylinders in thermal environment vol.42, pp.11, 2017, https://doi.org/10.1002/pc.26258