DOI QR코드

DOI QR Code

GIS 기반의 도심지 지반침하지도 작성 사례

GIS-based Subsidence Hazard Map in Urban Area

  • 최은경 ((주)지아이 지반정보연구소) ;
  • 김성욱 ((주)지아이 지반정보연구소) ;
  • 조진우 (한국건설기술연구원 지반연구소) ;
  • 이주형 (한국건설기술연구원 지반연구소)
  • Choi, Eun-Kyeong (Geo-Information Institute, GI Co. Ltd.) ;
  • Kim, Sung-Wook (Geo-Information Institute, GI Co. Ltd.) ;
  • Cho, Jin-Woo (Geotechnical Engrg. Research Institute, Korea Institute of Civil Engrg. and Building Technology) ;
  • Lee, Ju-Hyung (Geotechnical Engrg. Research Institute, Korea Institute of Civil Engrg. and Building Technology)
  • 투고 : 2017.07.11
  • 심사 : 2017.09.25
  • 발행 : 2017.10.31

초록

자연사면의 붕괴를 예측하기 위한 위험지도는 지형학적, 수문학적 및 지질학적 요소의 조합으로 구성된다. 지형적인 요소는 수치고도모형(DEM)으로부터 추출하여 작성된 방위도, 경사도, 곡률, 지형지수를 포함하며, 풍화대의 심도를 반영하고 있다. 수문학적 요소는 토양배수(soil drainage), 습윤지수가 불안정성을 판단하는 주요 요소이다. 그러나 대부분의 도시 지역은 평야(저지대)에 위치하므로 지형요소와 수문요소만으로 위험지도를 작성하기는 어려운 것으로 판단된다. 본 연구에서는 도심지와 같은 평탄한 저경사 지역의 붕괴 위험을 판단하기 위하여 고수계, 토양심도(풍화토심도)와 지하수 수위 데이터 등과 같은 다양한 자료를 수집하여 해석 요소로 사용하였으며, 위험지도의 신뢰성을 판단하기 위하여 강남구와 여의도 지역에서 과거 발생한 재해 기록과 비교하여 분석을 진행하였다. 기존에 작성된 재난안전연구원의 재해위험도는 지형적인 요소만이 반영되었으므로 도심지는 대체로 안정된 지역으로 분류되고 있고, 과거 붕괴 이력이 반영되지 않았다. 본 연구에서 제시된 붕괴위험도는 풍화대 심도, 토양 배수조건, 지하수 조건, 고수계 등을 입력자료로 추가하였다. 그 결과 실제 붕괴가 발생한 지점에서 취약성이 증가하는 결과를 보였다. 실제 붕괴이력과 지반침하지도의 결과를 비교 분석한 결과 기존 방식에 의한 붕괴위험 지도에서는 3등급은 12%, 4등급은 88%로 분석되었으나, 도심지 특성을 고려한 지반침하지도에서는 2등급 2%, 3등급 29%, 4등급 66%, 5등급 2%으로 재해취약성의 변화가 잘 나타났으며, 실제 붕괴가 발생한 지점에서 위험도가 증가하였고 상당한 유의성을 나타내었다.

The hazard maps for predicting collapse on natural slopes consist of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as soil drainage, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of subsidence of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual subsidence points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage.

키워드

참고문헌

  1. Chae, B.G., Kim, W.Y., Cho, Y.C., Kim, K.S., Lee, C.O., and Choi, Y.S. (2004), "Development of a Logistic Regression Model for Probabilistic Prediction of Debris Flow", The Journal of Engineering Geology, Vol.14, No.2, pp.211-222 (in Korean).
  2. Choi, E.K., Kim, S.W., Lee, Y.C., Lee, K.H., and Kim, I.S. (2013), "Analyzing the Disaster Vulnerability of Mt. Baekdusan Area using Terrain Factors", Journal of Korean Earth Science Society, Vol.34, No.7, pp.1-7 (in Korean). https://doi.org/10.5467/JKESS.2013.34.1.1
  3. Costa-Cabral, M. and Burges S.T. (1994), Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30, 1681-1692. https://doi.org/10.1029/93WR03512
  4. Kim, Y.J., Kim, W.Y., and Yu, I.H. (1993), "Analysis of Regional Geologic Hazards using GIS", The Journal of GIS Association of Korea, Vol.1, No.1, pp.84-94 (in Korean).
  5. KBS, https://www.google.com/maps/d/viewer?mid=1TmEveTjNks PPD2jR2k2b_mppCC k&ll=35.980693500921%2C127.84438862148431&z=7
  6. Korea Disaster Prevention Association (2011), Special issue : Urban disaster for preemptive response to abnormal climate!!, Journal of Disaster Prevention, Vol.13, No.4, p.312 (in Korean).
  7. Korea Environment Institute (KEI) (2011), National assessment on sea level rise impact of Korean coast in the socioeconomic context.1, Report KEI 2011-23, p.344 (in Korean).
  8. Korea Institute of Civil Engineering and Building Technology (KICT) (2014), Planning Study: Development of Technology for kife Detection and Rapid Rescue in Disaster Area of Urban Underground Collapse, Report KICT Internal Research Project, KICT 2014-209, 130p (in Korean).
  9. Korea Institute of Geoscience and mineral resources (Kigam), Explanatory text of the Geological map of Seoul sheet (1982), Ddug seom sheet (1981), Anyang sheet (1975), Dunjeon sheet (1982).
  10. Korean soil information system, http://soil.rda.go.kr
  11. Ministry of land, Infrastructure and Transport, Geotechnical Information DB system, https://www.geoinfo.or.kr/
  12. Ministry of Public Safety and Security (MPSS) (2015), 2015 statistics annual report, Report 11-1750000-000040-10, p.426 (in Korean).
  13. National Disaster Management Research Institute (NDMI) (2008), A Study on the Steep Slope Information Compilation and Establishment of an Analysis System, Report NDMI-PR-2008-08-02, 270p (in Korean).
  14. National Disaster Management Research Institute (NDMI) (2013), A study on the failure characteristics and safety factors of steep slopes based on the rainfall infiltration analysis - unsaturated characteristics and steep-slope risk evaluation of weathered metamorphic soil test-beds. Report NDMI-PR-2013-19-02, 308p (in Korean).
  15. National Geographic Information Institute (NGII), http://www.ngii.go.kr
  16. Seoul Metropolitan Government, Geotechnical Information DB System, http://surveycp.seoul.go.kr:8080/Soil/main.do
  17. Seoul Metropolitan Government, https://fusiontables.googleusercontent.com/embedviz?q=select+col8+from+1ANtFK_Ob4Q6_Is8PgB22ZVJlSW7R_7JAr6IlNgsH&viz=MAP&h=false&lat=37.50869441016177&lng=127.08069764880372&t=1&z=11&l=col8&y=2&tmplt=2&hml=ONE_COL_LAT_LNG
  18. Wilson, J.P. (2007), Terrain Analysis : Principles and Applications, John Wiley & Sons Inc, pp.479.
  19. Yang, I.T., Kim, J.C., Chun, K.S., and Kim, D.M. (2001), "Analysis of Landslide Factors Using Geo-Spatial Information System and Analytic Hierarchy Process", Korean Journal of Geomatics, Vol. 19, No.3, pp.273-281 (in Korean).