DOI QR코드

DOI QR Code

The Study on Automatic Speech Recognizer Utilizing Mobile Platform on Korean EFL Learners' Pronunciation Development

자동음성인식 기술을 이용한 모바일 기반 발음 교수법과 영어 학습자의 발음 향상에 관한 연구

  • Received : 2017.09.30
  • Accepted : 2017.10.25
  • Published : 2017.10.31

Abstract

This study explored the effect of ASR-based pronunciation instruction, using a mobile platform, on EFL learners' pronunciation development. Particularly, this quasi-experimental study focused on whether using mobile ASR, which provides voice-to-text feedback, can enhance the perception and production of target English consonants minimal pairs (V-B, R-L, and G-Z) of Korean EFL learners. Three intact classes of 117 Korean university students were assigned to three groups: a) ASR Group: ASR-based pronunciation instruction providing textual feedback by the mobile ASR; b) Conventional Group: conventional face-to-face pronunciation instruction providing individual oral feedback by the instructor; and the c) Hybrid Group: ASR-based pronunciation instruction plus conventional pronunciation instruction. The ANCOVA results showed that the adjusted mean score for pronunciation production post-test on the Hybrid instruction group (M=82.71, SD =3.3) was significantly higher than the Conventional group (M=62.6, SD =4.05) (p<.05).

본 논문은 스마트폰의 플랫폼에 내장되어 있는 자동음성인식 기술을 활용하여 영어 학습자의 발음에 대한 즉각적인 문자 피드백을 제공하는 모바일 기반 발음 교수법이 영어 학습자의 자음 발음 (V-B, R-L, G-Z) 인식과 출력에 미치는 영향에 대해 연구했다. 특히, 자동음성인식 기술을 이용한 모바일 기반 발음 교수법을 사용한 그룹, 전통적인 교사 중심의 발음 교수법 그룹, 그리고 이 둘을 합친 하이브리드 교수법 그룹으로 나누어 영어 학습자의 발음 평가 결과를 (인지, 출력) 비교, 분석했다. ANCOVA를 이용한 분석 결과, 영어 학습자의 발음 출력에 있어 하이브리드 교수법 그룹이 (M=82.71, SD =3.3) 전통적인 교수법 그룹 (M=62.6, SD=4.05) 보다 유의미하게 높은 결과를 나타냈다 (p<.05).

Keywords

References

  1. A. K. Elimat and A. F. AbuSeileek, "Automatic Speech Recognition Technology as an Effective Means for Teaching Pronunciation," JALT CALL Journal, Vol. 10, No. 1, pp. 21-47, 2014.
  2. D. Liakin, W. Cardoso, and N. Liakina, "Learning L2 pronunciation with a mobile speech recognizer: French /y/," CALICO Journal, Vol. 32, No. 1, pp. 12-25, 2015.
  3. J. A. Foote and K. McDonough, "Using shadowing with mobile technology to improve L2 pronunciation," Journal of Second Language Pronunciation, Vol. 3, No. 1, pp. 34-56, 2017. https://doi.org/10.1075/jslp.3.1.02foo
  4. A. Baker, "Exploring teachers' knowledge of second language pronunciation techniques: teacher cognitions, observed classroom practices, and student perceptions," TESOL Quarterly, Vol. 48, No. 1, pp. 136-163, 2014. https://doi.org/10.1002/tesq.99
  5. M. Celce-Murcia, D. Brinton, and J. Goodwin, Teaching pronunciation, 2nd ed. Cambridge: Cambridge University Press, 2010.
  6. S. M. Mccrocklin, "Pronunciation learner autonomy: The potential of Automatic Speech Recognition," System, Vol. 57, pp. 25-42, 2016. https://doi.org/10.1016/j.system.2015.12.013
  7. M. Li, M. Han, Z. Chen, Y. Mo, X. Chen, and X. Liu, "Improving English Pronunciation Via Automatic Speech Recognition Technology," in Proceeding of Educational Technology (ISET), 2017 International Symposium, pp. 224-228, 2017.
  8. I. S. Lee, "Applications of English education with remote wireless mobile devices," Journal of Digital Contents Society, Vol. 14, No. 2, pp. 255-262, 2013. https://doi.org/10.9728/dcs.2013.14.2.255
  9. E. J. Song, "A study on the system for on-line education by mobile," Journal of Digital Contents Society, Vol. 6, No. 3, pp. 149-155, 2005.
  10. R. Hincks, "Speech technologies for pronunciation feedback and evaluation," ReCALL, Vol. 15, pp. 3-20, 2003.
  11. J. van Doremalen, C. Cucchiarini, and H. Strik, "Automatic pronunciation error detection in non-native speech," Journal of the Acoustical Society of America, Vol. 134, No. 2, pp. 1336-1347, 2013. https://doi.org/10.1121/1.4813304
  12. H. Franco, H. Bratt, R. Rossier, V. Rao Gadde, E. Shriberg, V. Abrash, and K. Precoda, "EduSpeak: A speech recognition and pronunciation scoring toolkit for computer-aided language learning applications," Language Testing, Vol. 27, No. 3, pp. 401-418, 2012. https://doi.org/10.1177/0265532210364408
  13. A. Neri, C. Cucchiarini, H. Strik, and L. Boves, "The pedagogy-technology interface in Computer Assisted Pronunciation Training," Computer Assisted Language Learning, Vol. 15, pp. 441-447, 2002. https://doi.org/10.1076/call.15.5.441.13473
  14. H. Chen, "Developing and evaluating an oral skills training website supported by automatic speech recognition technology," Recall Journal, Vol. 23, No. 1, pp. 59-78, 2011. https://doi.org/10.1017/S0958344010000285
  15. C. Gonzalez-Ferreras and V. Cardenoso-Payo, "Improving L2 Production with a Gamified Computer-Assisted Pronunciation Training Tool, TipTopTalk!," in Proceeding of IberSPEECH 2016: IX Jornadas en Tecnologias del Habla and the V Iberian SLTech Workshop, pp. 177-186, 2016.
  16. M. Gutierrez-Colon Plana, P. Gallardo-Torrano, and M. Grova, "SMS as a learning tool: an experimental study," The Eurocall Review, Vol. 20, No. 2, pp. 33-47, 2012.
  17. S. Petersen, R. Sell, and J. Watts, "Let the students lead the way: An exploratory study of mobile language learning in a classroom," in Proceedings 10th World Conference on Mobile and Contextual Learning (mLearn), Beijing, China: Beijing Normal University, pp. 55-61, 2011.
  18. J. M. Howard and A. Scott, "Any time, any place, flexible pace: Technology-enhanced language learning in a teacher education programme," Australian Journal of Teacher Education, Vol. 42, No. 6, pp. 51-68, 2017.