DOI QR코드

DOI QR Code

Research and Development Status of HALE Aircraft with Turbo-charged Reciprocating Engine

다단 터보차저 시스템이 장착된 왕복동 엔진을 사용하는 고고도 장기체공 항공기 연구개발 현황

  • Kang, Young Seok (Engine Components Research Team, Korea Aerospace Research Institute) ;
  • Lim, Byeung Jun (Engine Components Research Team, Korea Aerospace Research Institute) ;
  • Cha, Bong Jun (Engine Components Research Team, Korea Aerospace Research Institute)
  • 강영석 (한국항공우주연구원 엔진부품연구팀) ;
  • 임병준 (한국항공우주연구원 엔진부품연구팀) ;
  • 차봉준 (한국항공우주연구원 엔진부품연구팀)
  • Received : 2017.08.02
  • Accepted : 2017.09.11
  • Published : 2017.10.31

Abstract

A high altitude long endurance aircraft which carries out missions of environmental research communication relay or ground surveillance, should have the capacity to cruise in the stratosphere at a relatively low speed for a long dwell time without the necessity of refueling. When one considers the propulsion system for such an aircraft, a reciprocating engine with a serial turbo-charger system to boost rarefied ambient air up to sea level condition, would represent an good, informed and practical choice regardless of the cruising altitude of the aircraft. In this paper, high altitude long endurance aircraft developed by overseas research groups and research trends, regarding multi-stage turbocharger systems, are introduced.

고고도 장기체공 항공기는 기상조건이 크게 변하지 않는 성층권 내에서 장기간 임무를 수행하며, 비교적 저속으로 순항할 수 있는 추진기관을 선택하여야 한다. 다단 터보차저 시스템과 왕복동 엔진으로 구성된 추진기관은 고도와 상관없이 동일한 추력을 내는 고효율 추진기관으로 알려져 있으며, 이러한 특성으로 인해 여러 고고도 항공기의 추진기관으로 활용되었다. 본 논문에서는 주로 국외에서 개발된 다단 터보차저 시스템이 장착된 왕복동 엔진을 추진기관으로 사용한 항공기 현황을 소개하고, 해당 추진기관 중 가장 중요한 역할을 담당하는 다단 터보차저 시스템에 대한 국내외 연구개발 동향을 살펴보도록 한다.

Keywords

References

  1. SeungJae wang, SangGon Kim and YungGyo Lee, "Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV)," Journal of Aerospace System Engineering, Vol. 10, No. 1, pp. 59-65, 2016 https://doi.org/10.20910/JASE.2016.10.1.59
  2. R. E. Wilkinson and R. B. Benway, "Liquid Cooled Turbocharged Propulsion System for HALE Application," ASME 91-GT-399, 1991.
  3. Bettner, James L., Blandford, Craig S. and Rezy, Bernie J., "Propulsion system assessment for very high UAV under ERAST," NASA-CR-195469, May, 1995
  4. S. Ashley, "Ozone Drone," Popular Science, pp. 60-64, July, 1992
  5. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-059-DFRC.html
  6. https://www.nasa.gov/centers/dryden/history/pastprojects/Erast/perseusb.html
  7. Herbert J. Krammer, "Observation of the Earth and Its Environment," 2nd Edition, Springer-Verlag Berlin Heidelberg GmbH, pp. 424-425
  8. http://www.scaled.com/projects/raptor
  9. http://www.airwar.ru/enc/bpla/raptor.html
  10. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-058-DFRC.html
  11. https://en.wikipedia.org/wiki/General_Atomics_ALTUS
  12. "$ALTUS^{TM}$ II - How High is High," FS-2003-01-058 DFRC, NASA Dryden Flight Research Center, 2003.
  13. Vincent G. Ambrosia, Steven S. Wegener, Donald V. Sullivan, Sally W. Buechel, Stephen E. Dunagan, James A. Brass, Jay Stoneburner, and Susan M. Schoenung, "Demonstrating UAV-Acquired Real-Time Thermal Data over Fires," Photogrammetric Engineering & Remote Sensing, Vol. 69, No. 4, pp. 391-402, April, 2003. https://doi.org/10.14358/PERS.69.4.391
  14. Philip Meeks, "A safer way to fight forest fires," The Rotarian, Vol. 183, No. 2, pp. 10, Aug, 2004.
  15. https://www.nasa.gov/centers/dryden/multimedia/imagegallery/Theseus/Theseus_proj_desc.html
  16. https://en.wikipedia.org/wiki/Boeing_Condor
  17. http://www.spyflight.co.uk/boeing%20condor.htm
  18. Pat O'Neil, "Boeing High Altitude Long Endurance (HALE) UAS," Boeing, 2012
  19. Ahmed K. Noor and Samuel L. Venneri, "Future Aeronautical and Space Systems," American Institute of Aeronautics and Astronautics, pp. 229-237, 1997
  20. https://en.wikipedia.org/wiki/Grob_Strato_2C
  21. https://www.flightglobal.com/news/articles/dlr-cancels-strato-2c-contract-12451/
  22. https://www.nasa.gov/centers/dryden/multimedia/imagegallery/Theseus/EC96-43583-6.html
  23. http://craymond.no-ip.info/awk/twuavc.html
  24. C. Rodgers, "Turbocharging a High Altitude UAV C. I. Engine," AIAA 2001-3970, 2001.
  25. https://archive.org/details/C-1996-2694
  26. Loth. J. L., Morris. G. J. and Metapalli. P., "Staged Turbo-charging for High Altitude IC Engines," AIAA 97-3294, 1997.
  27. Metlapalli, P. B., "Three-Staged Turbocharger Modeling with Passive Control System," West Virginia University Ph. D Dissertation, 1996.
  28. http://www.aero.jaxa.jp/eng/research/star/uav/news1503 2-5.html
  29. Peng Shan, Yicheong Zhou and Dexuan Zhu, "Mathematical Model of Two-Stage Turbocharging Gasoline Engine Propeller Propulsion system and Analysis of Its Flying Characteristics," Journal of Engineering for Gas Turbines and Power, Vol. 137, No. 5, 051201, 2015
  30. Yicheong Zhou and Peng Shan, "Flight Characteristic Comparison of Single and Dual Stage Turbocharging Reciprocating Engine Propeller Propulsion System based on Mathematical Model," Journal of Mechanical Science and Technology, Vol. 30, No. 5, pp. 2369-2377, 2016 https://doi.org/10.1007/s12206-016-0447-4
  31. Y. S. Kang, B. J. Lim and B. J. Cha, "Multi-stage turbocharger system analysis method for high altitude UAV engine," Journal of Mechanical Science and Technology, Vol. 31, no. 6, pp. 2803-2811, June, 2017 https://doi.org/10.1007/s12206-017-0523-4