DOI QR코드

DOI QR Code

Performance Evaluation of Chloride and Sulfate Removal using Anion Exchange Resin in Saturated Ca(OH)2 Solutions

음이온 교환수지를 이용한 포화 수산화칼슘 수용액 내 염소이온 및 황산이온 제거 특성 평가

  • 이윤수 (한양대학교 건축시스템공학과) ;
  • 진정심 (한양대학교 건축시스템공학과) ;
  • 이한승 (한양대학교 ERICA 건축학부)
  • Received : 2017.01.13
  • Accepted : 2017.02.03
  • Published : 2017.03.01

Abstract

Recently, self-healing concrete has been researched as maintenance and repair of concrete structures are important challenges we face. This paper focused on possibility of ion exchange resin as a novelty material directly and actively controlling harmful ions of concrete, whereas most self-healing concrete researches have been focused on methods to automatically filling and repairing internal crack of concrete. Because equilibrium properties between ion exchange resin and harmful ion is important before design of cement mixing proportion, it was conducted to remove chloride or sulfate in saturated $Ca(OH)_2$ solutions containing NaCl or $Na_2SO_4$. The removal performance was analyzed using kinetic equation and isothermal equation. Consequently, the removal properties of anion exchange resin were relatively more dependent on pseudo second reaction equation and Langmuir equation than pseudo first reaction equation and Freundlich equation. And it was concluded that each chloride and sulfate can be removed to the maximum 1068 ppm and 1314 ppm.

최근에 구조물의 유지관리 및 보수에 관한 사안이 중요시되면서 콘크리트의 자기치유에 관한 연구가 진행되고 있다. 그러나 현재 진행되는 다수의 자기치유 콘크리트 연구는 콘크리트 유해이온의 침투경로인 내부 균열을 막는 방안에 초점을 맞추고 있다. 이와는 다르게 본 연구에서는 콘크리트 내부의 유해이온을 직접적이며 능동적으로 제어할 수 있는 소재인 이온교환수지의 적용 가능성을 보고자 한다. 이에 따라 이온교환수지를 시멘트 계 재료에 적용하기 이전에 이온교환수지의 성능평가는 배합설계 시 중요한 지표가 되기 때문에, NaCl 및 $Na_2SO_4$가 들어있는 포화 수산화칼슘 수용액 내에서 이온교환수지의 염소이온 및 황산이온 제거특성을 보았다. 본 연구에서는 음이온 교환수지를 사용하였고, 이온교환수지의 염소이온 및 황산이온 제거성능은 반응속도식과 등온흡착식을 적용하여 평가하였다. 결과적으로 포화 수산화칼슘 수용액에서 음이온 교환수지의 특성은 유사 1차 반응식과 Freundlich 등온흡착식보다 유사 2차 반응식과 Langmuir 등온흡착식에 상대적으로 더 적합하였다. 그리고 염소이온은 최대 약 1068 ppm, 황산이온은 최대 약 1314 ppm까지 제거할 수 있는 것으로 계산되었다.

Keywords

References

  1. Abdulgader, H. A., Kochkodan, V., and Hilal, N. (2013), Hybrid ion exchange - Pressure driven membrane processes in water treatment: A review, Separation and Purification Technology, 116, 253-264. https://doi.org/10.1016/j.seppur.2013.05.052
  2. Bannet, J., Schue, T. J., Clear, K. C., Lankard, D. L., Hartt, W. H., and Swiat, W. J. (1993), Electrochemical Chloride Removal and Protection of Concrete Bridge Components: Laboratory Studies, Strategic Highway Research Program National Research Council, Washington.
  3. Care, S., and Derkx, F. (2011), Determination of Relevant Parameters Influencing Gas Permeability of Mortars, Construction and Building Materials, 25, 1248-1256. https://doi.org/10.1016/j.conbuildmat.2010.09.028
  4. Chen, Y., Shui, Z., Chen, W., and Chen, G. (2015), Chloride Binding of Synthetic $Ca-Al-NO_3$ LDHs in Hardened Cement Paste, Construction and Building Materials, 93, 1051-1058. https://doi.org/10.1016/j.conbuildmat.2015.05.047
  5. Dong, B., Fang, G., Ding, W., Liu, Y., Zhang, J., Han, N., and Xing, F. (2016), Self-healing Features in Cementitious Material with Urea-formaldehyde/epoxy Microcapsules, Construction and Building Materials, 106, 608-617. https://doi.org/10.1016/j.conbuildmat.2015.12.140
  6. Duan, P., Chen, W., Ma, J., and Shui, Z. (2013), Influence of Layered Double Hydroxides on Microstructure and Carbonation Resistance of Sulphoaluminate Cement Concrete, Construction and Building Materials, 48, 601-609. https://doi.org/10.1016/j.conbuildmat.2013.07.049
  7. Fujikawa, H., and Hriayama, W. (2016), Solid-phase Extraction of Staphylococcal Enterotoxin A in Dairy Products Using an Ion Exchange Resin, Food Control, 1-6.
  8. Haque, M. N., and Mutsuyoshi, H. (2015), Influence of Ion Exchange Resin in Chloride Binding for RC Structures Exposed to Marine Environment, IABSE-JSCE Joint Conference on Advances in Bridge Engineering-III, Dhaka, Bangladesh. Amin, Okui, Bhuiyan, Ueda.
  9. Lee, I. H., Kuan Y. C., Chern J. M. (2007), Equilibrium and Kinetics of Heavy Metal Ion Exchange, Journal of the chinese institute of chemical engineers, 38, 71-84. https://doi.org/10.1016/j.jcice.2006.11.001
  10. Leemann, A., Munch, B., Gasser, P., and Holzer, L. (2006), Influence of Compaction on the Interfacial Transition Zone and the Permeability of Concrete, Cement and Concrete Research, 36, 1425-1433. https://doi.org/10.1016/j.cemconres.2006.02.010
  11. Liguori, F., Moreno-Marrodan, C., and Barbaro, P. (2015), Metal Nanoparticles Immobilized on Ion-exchange Resins: A Versatile and Effective Catalyst Platform for Sustainable Chemistry, Chinese Journal of Catalysis, 36, 1157-1169. https://doi.org/10.1016/S1872-2067(15)60865-8
  12. Luca, B., Bernhard, E., Pietro, P., Elena R., and Rob P. (2013), Corrosion of Steel in Concrete, WILEY-VCH, Singapore, 349-350.
  13. Meghdad, H., Vivek, B., and Nemkumar, B. (2009), The Effect of Mechanical Stress on Permeability of Concrete: A review, Cement and Concrete Composites, 31, 213-220. https://doi.org/10.1016/j.cemconcomp.2009.02.003
  14. Raki, L., Beaudoin, J. J., and Mitchell, L. (2004), Layered Double Hydroxide-like Materials: Nanocomposites for Use in Concrete, Cement and Concrete Research, 34, 1717-1724. https://doi.org/10.1016/j.cemconres.2004.05.012
  15. Reinhardt, H. W., and Jooss, M. (2003), Permeability and Self-healing of Cracked Concrete as a Function of Temperature and Crack Width, Cement and Concrete Research, 33, 981-985. https://doi.org/10.1016/S0008-8846(02)01099-2
  16. Snoeck, D., Dewanckele, J., Cnudde, V., and De Belie, N. (2016), X-ray Computed Microtomography to Study Autogenous Healing of Cementitious Materials Promoted by Superabsorbent Polymers, Cement and Concrete Composites, 65, 83-93. https://doi.org/10.1016/j.cemconcomp.2015.10.016
  17. Van Breugel, K. (2007), Is there a market for Self-healing cement based materials, Proceedings of the First International Conference on Self Healing Materials, Noordwijk aan Zee, The Netherlands, 18-20.
  18. Van Tittelboom, K., De Belie, N., De Muynck, W., and Verstraete, W. (2010), Use of Bacteria to Repair Cracks in Concrete, Cement and Concrete Research, 40, 157-166. https://doi.org/10.1016/j.cemconres.2009.08.025
  19. Wang. J., and Zhong, W. (2015), Treatment and Disposal of Spent Radioactive Ion-exchange Resins Produced in the Nuclear Industry, Progress in Nuclear Energy, 78, 47-55. https://doi.org/10.1016/j.pnucene.2014.08.003
  20. Wiktor, V., and Jonkers, H. M. (2011), Quantification of Crack-healing in Novel Bacteria-based Self-healing Concrete, Cement and Concrete Composites, 33, 763-770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
  21. Yang, Y., Lepech, M. D., Yang, E. H., and Li, V. C. (2009), Autogenous Healing of Engineered Cementitious Composites Under Wet-dry Cycles, Cement and Concrete Research, 39, 382-390. https://doi.org/10.1016/j.cemconres.2009.01.013
  22. Yoon, S., Moon, J., Bae, S., Duan, X., Giannelis, E. P., and Monteiro, P. M. (2014), Chloride Adsorption by Calcined Layered Double Hydroxides in Hardened Portland Cement Paste, Materials Chemistry and Physics, 145, 376-386. https://doi.org/10.1016/j.matchemphys.2014.02.026
  23. Yue, L., Xiaohan, C., Liu J., and Renbo, Z. (2016), Experimental and Numerical Study on Chloride Transmission in Cracked Concrete, Construction and Building Materials, 127, 425-435. https://doi.org/10.1016/j.conbuildmat.2016.10.044
  24. Zhao, Y., Wang, Z., Dai, J., Chen, L., and Huang Y. (2014), Preparation and Quality Assessment of High-purity Ginseng Tsotal Saponins by Ion Exchange Resin Combined with Macroporous Adsorption Resin Separation, Chinese Journal of Natural Medicines, 12(5), 0382-0392. https://doi.org/10.1016/S1875-5364(14)60048-0