DOI QR코드

DOI QR Code

고강도 철근을 적용한 철근콘크리트 전단벽체의 내진성능평가를 위한 해석적 연구

Analytical Study on Seismic Performance Assesment of Reinforced Concrete Shear Wall using High-Strength Reinforcing Bar

  • 천주현 ((재)한국건설생활환경시험연구원) ;
  • 김경민 ((재)한국건설생활환경시험연구원) ;
  • 박광민 ((재)한국건설생활환경시험연구원) ;
  • 신현목 (성균관대학교 건설환경공학부)
  • 투고 : 2017.01.10
  • 심사 : 2017.01.18
  • 발행 : 2017.03.01

초록

본 연구는 고강도 철근이 배근된 철근콘크리트 전단벽체 실험체에 대하여 균열의 발생에서부터 철근의 항복과 콘크리트의 파쇄에 이르는 전반적인 거동 특성과 함께 내진성능 평가 예측을 위한 합리적인 해석적 방안을 마련하는 것을 목표로 한다. 1.0의 일정한 형상비를 갖으며 각 방향으로 철근비와 항복강도, 배근상세, 콘크리트 설계 강도, 단부형상 및 단부 횡구속 후프(Hoop) 여부 등을 주요 변수로 갖는 총 8개의 실험체를 검증 대상으로 선정하여 기존에 저자 등에 의해 새로이 수정된 구성관계식을 적용한 비선형 유한요소해석 프로그램(RCAHEST)을 통한 해석을 수행하였다. 실험과 해석으로부터의 최대 하중 및 이에 대응되는 변위에 대한 평균과 변동계수는 각각 1.05와 8% 및 1.17과 19% 정도로 예측하였다. 모든 실험체에 대한 파괴모드와 파괴시까지의 전반적인 거동 특성 역시 비교적 적절히 예측하고 있음을 확인하였으며 이러한 연구결과들은 향후, 고강도 철근의 적용과 관련된 국내외 설계기준에의 적용을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

The purpose of this study is to establish a reasonable analytical method for the estimation of overall behavior characteristic from cracking to yielding of rebar and crushing of concrete and seismic performance of reinforced concrete shear wall with high-strength reinforcing bar. A total of 8 specimens of reinforced concrete walls which have constant aspect ratio and a variety of variables such as reinforcement ratio, reinforcement yielding strength, reinforcement details, concrete design strength, section shape and whether lateral restraint hoop were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the proposed constitutive equation by the authors. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 8%. The mean and coefficient of variation for displacement corresponding maximum load from the experiment and analysis results was predicted 1.17 and 19% respectively. The analytical results were predicted relatively well the fracture mode and the overall behavior until fracture for all specimens. These results are expected to be used as basic data for application of high-strength reinforcing bar to design codes in the future.

키워드

참고문헌

  1. ACI Committee 318 (2011), Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills, 520.
  2. ACI Committee 349 (2014), Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349-13) and Commentary, American Concrete Institute, Farmington Hills, 200.
  3. Cheon, J. H., Kim, T. H., Lee, B. J., Lee, J. H., and Shin, H. M. (2012), Inelastic Behavior and Ductility Capacity of Circular Hollow Reinforced Concrete Bridge Piers under Earthquake, Magazine of Concrete Research, 64(10), 919-930. https://doi.org/10.1680/macr.11.00131
  4. Cheon, J. H., Seong, D. J., Cho, H. J., Cho, J. Y., and Shin, H. M. (2015), Nonlinear Finite Element Analysis of the Reinforced Concrete Panel using High-Strength Reinforcing Bar, Journal of the Korea Concrete Institute, 27(5), 481-488. https://doi.org/10.4334/JKCI.2015.27.5.481
  5. Cheon, J. H., Lee, K. H., Back, J. W., Park, H. G., and Shin, H. M. (2016), Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar, Journal of the Korea Concrete Institute, 28(4), 473-480. https://doi.org/10.4334/JKCI.2016.28.4.473
  6. Kim, T. H., Lee, K. M., Yoon, K. M., and Shin, S. H. (2003), Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Piers under Earthquake. I; Theory and Formulation, Journal of Structural Engineering, ASCE, 129(9), 1199-1207. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1199)
  7. Kim, T. H., Lee, K. M., Chugn, Y. S., and Shin, S. H. (2005), Seismic Damage Assesment of Reinforced Concrete Bridge Columns, Engineering Structures, 27(4), 576-592. https://doi.org/10.1016/j.engstruct.2004.11.016
  8. Lee, K. H., You, T. S., Kim, T. W., and Jeong, S. H. (2012), Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements, Journal of the Korea Concrete Institute, 24(5), 559-566. https://doi.org/10.4334/JKCI.2012.24.5.559
  9. Mun, J. H., and Yang, K. H. (2014), Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls, Journal of the Korea Concrete Institute, 26(2), 159-169. https://doi.org/10.4334/JKCI.2014.26.2.159
  10. Mun, J. H., and Yang, K. H. (2015), Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls, Journal of the Korea Concrete Institute, 27(6), 615-623. https://doi.org/10.4334/JKCI.2015.27.6.615
  11. Park, H. G., Baek, J. W., Lee, J. H., and Shin, H. M. (2015), Cyclic Loading Test for Shear Strength of Low-rise Reinforced Concrete Walls With Grade 550 MPa Bars, ACI Structural Journal, 112(3), 299-310.
  12. Seong, D. J., Kim, T. H., Oh, M. S., and Shin, H. M. (2011), Inelastic Performance of High-Strength Concrete Bridge Columns under Earthquake Loads, Journal of Advanced Concrete Technology, 9(2), 205-220. https://doi.org/10.3151/jact.9.205