DOI QR코드

DOI QR Code

Investigation of Microbiological and Physiochemical Quality for Irrigation Water used in Napa Cabbage Cultivation

배추 재배에 이용되는 농업용수의 미생물 오염도 조사 및 이화학성분 분석

  • 윤보현 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김민경 (농촌진흥청 기술협력국 국제기술협력과) ;
  • 류진희 (국립식량과학원 작물기초기반과) ;
  • 김원일 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 박병용 (국립농업과학원 기획조정과) ;
  • 김현주 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 이승돈 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김세리 (국립농업과학원 농산물안전성부 유해생물팀)
  • Received : 2017.08.25
  • Accepted : 2017.09.13
  • Published : 2017.10.30

Abstract

The purpose of this study was to investigate water quality for irrigation water used in Napa cabbage cultivation. The water samples were analyzed for physiochemical and microbiological quality for a total of 111 samples including surface water (n = 75) and groundwater (n = 36) collected from five different regions where Napa cabbage is massively grown. As a conclusion, the levels of fecal indicators for surface water were higher than those for groundwater. The numbers of coliform from surface water and groundwater were 1.96-4.96 and 0-3.98 log MPN/100 mL, respectively. Enterococci were detected in 95% (72/75) of surface water samples and 22% (8/36) of groundwater samples. Besides, 97% (73/75) of surface water samples were observed being contaminated with Escherichia coli, and 22% (8/36) of groundwater sample was positive for E. coli. In the case of surface water, E. coli and coliform correlate to T-P, and enterococci showed relevance to the suspended solid (SS) and biochemical oxygen demand (BOD). In groundwater, fecal indicator bacteria showed relevance to the SS and chemical oxygen demand (COD). These results could be provided as fundamental date for establishing microbial standard of water used in leafy vegetables cultivation.

본 연구는 국내 배추 주산단지 5지역을 대상으로 배추재배에 활용되는 농업용수를 각 지역의 수확 시기에 채취하여 위생지표세균(총대장균군, 대장균, 장구균)과 이화학 성분을 분석함으로써 농업용수의 수질의 오염도를 조사하기 위하여 수행되었다. 그 결과 지하수 보다 지표수에서 위생지표세균이 높은 수준으로 검출되었다. 지표수의 경우 총대장균군 1.96-4.96 log MPN/100 mL, 지하수의 경우 0-3.98 log MPN/100 mL 수준이었다. 장구균의 경우 지표수에서 95% (72/75), 지하수에서 22% (8/36) 빈도로 검출되었으며, 대장균의 경우 지표수에서 100% (72/75), 지하수에서 22% (8/36) 빈도로 검출되었다. 위생지표세균과 이화학성분의 상관관계를 조사한 결과, 지표수의 경우 대장균군과 대장균은 총인과 상관성을 보였으며, 장구균은 부유물질과 생물학적산소요구량에 상관성을 보였다. 지하수의 경우 위생지표세균은 부유물질과 화학적산소요구량에 상관성을 보였다. 본 연구의 결과는 엽채류 재배에 사용되는 농업용수의 미생물 기준을 설정하기 위한 기초자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Lee H.W., Yoon S.R., Kim S.J., Lee H.M., Lee J.Y., Lee J.H., Kim S.H., Ha J.H.: Identification of microbial communities, with a focus on foodborne pathogens, during Kimchi manufacturing process using culture-independent and-dependent analyses. LWT-Food Sci. Technol., 81, 153-159 (2017). https://doi.org/10.1016/j.lwt.2017.04.001
  2. Commision C.A.: Codex standard for Kimchi. Codex Stan 223, (2001).
  3. Magagine U.H.: Available from http://eating.health.com.Updated Feb 1 (2008).
  4. You J.H., Shin M.J., Choi S.K.: Importance and satisfaction with selection attributes when purchasing Kimchi. J. East. Asian. Soc, Diet. Life, 18, 624-632 (2008).
  5. Lee J.K., Jung D.W., Kim Y.J., Cha S.K., Lee M.K., Ahn B.H., Kwak N.S., Oh S.W.: Growth inhibitory effect of fermented Kimchi on food-borne pathogens. Food Sci. Biotechnol., 18, 12-17 (2009).
  6. Beuchat L.R., Farber J.M., Garrett E.H., Harris L.J., Parish M.E., Suslow T.V., Busta F.F.: Standardization of a method to determine the efficacy of sanitizers in inactivating human pathogenic microorganisms on raw fruits and vegetables. J. Food Prot., 64, 1079-1084 (2001). https://doi.org/10.4315/0362-028X-64.7.1079
  7. Choi Y.D., Lee C.W., Kim J.S., Chung D.H., Shim W.B.: Investigation of hazards from onions and their cultivation areas to establish a good agricultural practices (GAP) model. Korean J. Food Sci. Technol., 45, 785-790 (2013). https://doi.org/10.9721/KJFST.2013.45.6.785
  8. Uyttendaele M., Jaykus L.A., Amoah P., Chiodini A., Cunliffe D., Jacxsens L., Holvoet K., Korsten L., Lau M., McClure P., Medema G., Sampers I., Jasti P.R.: Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf., 14, 336-356 (2015). https://doi.org/10.1111/1541-4337.12133
  9. An Y.J., Lee W.M., Yoon C.G.: Evaluation of Korean water quality standards and suggestion of additional water parameters. Korean J. Limnol., 39, 285-295 (2006).
  10. Mossel D.: Marker (index and indicator) organisms in food and drinking water. Semantics, ecology, taxonomy and enumeration. Antonie van Leeuwenhoek, 48, 609-611 (1983). https://doi.org/10.1007/BF00399544
  11. Report EFSA. The community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2001. EFSA J., 12, 3547 (2014). https://doi.org/10.2903/j.efsa.2014.3547
  12. Hutchison M.L., Walters L.D., Morre T., Thomas D.J.I., Avery S.M.: Fate of pathogens present in livestock wastes spread onto fescue plots. Appl. Environ. Microbiol., 71, 691-696 (2005). https://doi.org/10.1128/AEM.71.2.691-696.2005
  13. Canosa A., Pinilla G.: Bacteriological eutrophication indicators in four Colombian water bodies (South America). Lakes Reserv. Res. Manag., 4, 23-27 (1999). https://doi.org/10.1046/j.1440-1770.1999.00079.x
  14. Ramteke P., Bhattacharjee J., Pathak S., Kalra N.: Evaluation of coliforms as indicators of water quality in India. J. Appl. Microbiol., 72, 352-356 (1992).
  15. Choi C.M., Yun S.G., Kim M.K., Kim J.H., Ko B.G., Park S.J., Ryu H.Y.: Correlation between ground water quality parameters and total coliforms in livestock farm. Korean J. Environ. Agric., 28, 86-91 (2009). https://doi.org/10.5338/KJEA.2009.28.1.086
  16. James J.: Overview of microbial hazards in fresh fruit and vegetables operations. Microbial hazard identification in fresh fruit and vegetables, John Wiley & Sons Inc., West Sussex, U.K., pp. 1-36 (2006).
  17. Steele M., Odumeru J.: Irrigation water as source of foodborne pathogens on fruit and vegetables. J. food prot., 67, 2839-2849 (2004). https://doi.org/10.4315/0362-028X-67.12.2839
  18. Canada C.A., Rudolph D.L., Waterloo Centre for Groundwater Research: Ontario farm groundwater quality survey. Summer 1992: [Ontario]: Agriculture Canada (1993).
  19. Exner M.E., Spalding R.F.: Ground-water contamination and well construction in Southeast Nebraska. Groundwater, 23, 26-34 (1985). https://doi.org/10.1111/j.1745-6584.1985.tb02776.x
  20. Park H.S., Jung K.H.: Comparison between urban area and rural area for characteristics of ground water quality in Chungnam provine. J. Korean Soc. Environ. Adm., 7, 495-502 (2001).
  21. U.S. Food and Drug Administration: Standards for the growing, harvesting, packing, and holding of produce for human consumption. Fed Regist 80, 74353-74642 (2015).
  22. Cabral J.P.: Water microbiology. Bacterial pathogens and water. Int. J. Env. Res. Pub. He., B, 3657-3703 (2010).
  23. Unc A., Goss M.J.: Transport of bacteria from manure and protection of water resources. Appl. Soil Ecol., 25, 1-18 (2004). https://doi.org/10.1016/j.apsoil.2003.08.007
  24. Cabral J.P., Marques C.: Faecal coliform bacteria in Febros river (Northwest Portugal): temporal variation, correlation with water parameters, and species identification. Environ. Monit. Assess., 118, 21-36 (2006). https://doi.org/10.1007/s10661-006-0771-8
  25. Touron A., Berthe T., Gargals G., Fournier M., Ratajczak M., Servais P., Petit F.: Assessment of faecal contamination and the relationship between pathogens and faecal bacterial indicators in an estuarine environment (Seine, France). Mar. Pollut. Bull., 54, 1441-1450 (2007). https://doi.org/10.1016/j.marpolbul.2007.05.009
  26. Wilkes G., Edge T., Gannon V., Jokinen C., Lyautey E., Medeiros D., Neumann N., Ruecker N., Topp E., Lapen D.R.: Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Res., 43, 2209-2223 (2009). https://doi.org/10.1016/j.watres.2009.01.033
  27. Seo H.J., Kang Y.J., Min K.W., Lee K.S., Seo G.Y., Kim S.H., Paik K.J., Kim S.J.: Characteristics of distribution and decomposition of organic matters in stream water and sewage effluent. Anal. Sci. Technol., 23, 36-44 (2010). https://doi.org/10.5806/AST.2010.23.1.036
  28. Shin Y.K.: Comparison of water quality between forested and agricultural subcatchments in Daegwallyong area. J. Korean Geogr. Soc., 39, 544-561 (2004).
  29. Lim D.O., Lee S.H., Oh Y.T., Ji S.I., Lee H.C.: The specific plants, water quality and the use realities of reservoirs in Jeonju city - Osongjae, Gisijae, Sunggokjae, Gujujae, Seounjae, Hwanghakjae and Hacksojae. Pro. Kor. Soc. Env. Eco. Con., 22, 179-183 (2012).
  30. Jo J.Y.: Water quality of agricultural groundwater in Western Coast area and Eastern Mountain Area of Jeollabuk-do. J. Appl. Biol. Chem., 54, 218-224 (2011). https://doi.org/10.3839/jabc.2011.036
  31. Charron D.F., Thomas M.K., Waltner-Toews D., Aramini J.J., Edge T., Kent R.A., Maarouf A., Wilson J.: Vulnerability of waterborne diseases to climate change in Canada: a review. J. Toxicol. Environ. Health, Part A, 67, 1667-1677 (2004). https://doi.org/10.1080/15287390490492313
  32. Sood A., Singh K.D., Pandey P., Sharma S.: Assessment of bacterial indicators and physicochemical parameters to investigate pollution status of Gangetic river system of Uttarakhand (India). Ecol. Indic., 8, 709-717 (2008). https://doi.org/10.1016/j.ecolind.2008.01.001
  33. Jin G., Englande A., Bradford H., Jeng H.W.: Comparison of E. coli, enterococci, and fecal coliform as indicators for brackish water quality assessment. Water Environ. Res., 76, 245-255 (2004). https://doi.org/10.2175/106143004X141807
  34. Beck Y., Sohn J.: Studies on the effect of water quality parameters on total coliform concentration in sewage effluents. J. Kor. Soc. Wat. Qual., 22, 166-171 (2006).
  35. McCoy W.F., Olson B.H.: Relationship among turbidity, particle counts and bacteriological quality within water distribution lines. Water Res., 20, 1023-1029 (1986). https://doi.org/10.1016/0043-1354(86)90045-X
  36. Delpla I., Jung A.V., Baures E., Clement M., Thomas O.: Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int., 35, 1225-1233 (2009). https://doi.org/10.1016/j.envint.2009.07.001

Cited by

  1. Comparative Assessment of Good Agricultural Practices Standards in Agricultural Product Quality Control Act with respect to Produce Safety Rule in Food Safety Modernization Act vol.33, pp.1, 2018, https://doi.org/10.13103/JFHS.2018.33.1.12