DOI QR코드

DOI QR Code

Effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and endoplasmic reticulum stress of the cardiac muscle in obese middle-aged rats

  • Kim, Kijin (Department of Physical Education, College of Physical Education, Keimyung University) ;
  • Ahn, Nayoung (Department of Physical Education, College of Physical Education, Keimyung University) ;
  • Jung, Suryun (Department of Physical Education, College of Physical Education, Keimyung University) ;
  • Park, Solee (Department of Physical Education, College of Physical Education, Keimyung University)
  • 투고 : 2017.05.26
  • 심사 : 2017.08.14
  • 발행 : 2017.11.01

초록

The aim of this study is to investigate the effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and ER stress of the cardiac muscle in high fat diet-induced obese middle-aged rats. We induced obesity over 6 weeks of period in 40 male Sprague-Dawley rats around 50 weeks old, and were randomly divided into four experimental groups: chow, HFD, exercise+HFD, and exercise+chow. The exercising groups underwent high-intensity intermittent training using a ladder-climbing and weight exercise 3 days/week for a total of 8 weeks. High-fat diet and concurrent exercise resulted in no significant reduction in body weight but caused a significant reduction in visceral fat weight (p<0.05). Expression of $PPAR{\delta}$ increased in the exercise groups and was significantly increased in the high-fat diet+exercise group (p<0.05). Among the ER stress-related proteins, the expression levels of p-PERK and CHOP, related to cardiac muscle damage, were significantly higher in the cardiac muscle of the high-fat diet group (p<0.05), and were significantly reduced by intermittent ladder-climbing exercise training (p<0.05). Specifically, this reduction was greater when the rats underwent exercise after switching back to the chow diet with a reduced caloric intake. Collectively, these results suggest that the combination of intermittent ladder-climbing exercise training and a reduced caloric intake can decrease the levels of ER stress-related proteins that contribute to cardiac muscle damage in obesity and aging. However, additional validation is required to understand the effects of these changes on mitochondrial biogenesis during exercise.

키워드

참고문헌

  1. Higami Y, Shimokawa I. Apoptosis in the aging process. Cell Tissue Res. 2000;301:125-132. https://doi.org/10.1007/s004419900156
  2. Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res. 2005;66:222-232. https://doi.org/10.1016/j.cardiores.2005.02.009
  3. Rimbaud S, Garnier A, Ventura-Clapier R. Mitochondrial biogenesis in cardiac pathophysiology. Pharmacol Rep. 2009;61:131-138. https://doi.org/10.1016/S1734-1140(09)70015-5
  4. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso E, Davidson MM, Michalik L, Wahli W, Vazquez-Carrera M. $PPAR{\beta}/{\delta}$ attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. Int J Cardiol. 2014;174:110-118. https://doi.org/10.1016/j.ijcard.2014.03.176
  5. Colgan SM, Tang D, Werstuck GH, Austin RC. Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2. Int J Biochem Cell Biol. 2007;39:1843-1851. https://doi.org/10.1016/j.biocel.2007.05.002
  6. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G, Bochaton-Piallat ML, Mochizuki N, Kitakaze M. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116:1226-1233. https://doi.org/10.1161/CIRCULATIONAHA.106.682054
  7. Wu J, Kaufman RJ. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ. 2006;13:374-384. https://doi.org/10.1038/sj.cdd.4401840
  8. Nisha VM, Anusree SS, Priyanka A, Raghu KG. Apigenin and quercetin ameliorate mitochondrial alterations by tunicamycininduced ER stress in 3T3-L1 adipocytes. Appl Biochem Biotechnol. 2014;174:1365-1375. https://doi.org/10.1007/s12010-014-1129-2
  9. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, Agostinis P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012;19:1880-1891. https://doi.org/10.1038/cdd.2012.74
  10. Holloszy JO. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol. 2008;59 Suppl 7:5-18.
  11. Terada S, Yokozeki T, Kawanaka K, Ogawa K, Higuchi M, Ezaki O, Tabata I. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol(1985). 2001;90:2019-2024. https://doi.org/10.1152/jappl.2001.90.6.2019
  12. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO. Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J Appl Physiol (1985). 1992;72:1780-1786. https://doi.org/10.1152/jappl.1992.72.5.1780
  13. Kohrt WM, Malley MT, Coggan AR, Spina RJ, Ogawa T, Ehsani AA, Bourey RE, Martin WH 3rd, Holloszy JO. Effects of gender, age, and fitness level on response of VO2max to training in 60-71 yr olds. J Appl Physiol (1985). 1991;71:2004-2011. https://doi.org/10.1152/jappl.1991.71.5.2004
  14. Short KR. Changes of deleted mtDNA after endurance exercise. Eur J Appl Physiol . 2003;90:223. https://doi.org/10.1007/s00421-003-0897-0
  15. Jubrias SA, Esselman PC, Price LB, Cress ME, Conley KE. Large energetic adaptations of elderly muscle to resistance and endurance training. J Appl Physiol (1985). 2001;90:1663-1670. https://doi.org/10.1152/jappl.2001.90.5.1663
  16. Balagopal P, Schimke JC, Ades P, Adey D, Nair KS. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am J Physiol Endocrinol Metab. 2001;280:E203-208. https://doi.org/10.1152/ajpendo.2001.280.2.E203
  17. Hasten DL, Pak-Loduca J, Obert KA, Yarasheski KE. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds. Am J Physiol Endocrinol Metab. 2000;278:E620-626. https://doi.org/10.1152/ajpendo.2000.278.4.E620
  18. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci. 2006;61:534-540. https://doi.org/10.1093/gerona/61.6.534
  19. Kavazis AN, McClung JM, Hood DA, Powers SK. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol. 2008;294:H928-935. https://doi.org/10.1152/ajpheart.01231.2007
  20. Hamilton KL, Powers SK, Sugiura T, Kim S, Lennon S, Tumer N, Mehta JL. Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am J Physiol Heart Circ Physiol. 2001;281:H1346-1352. https://doi.org/10.1152/ajpheart.2001.281.3.H1346
  21. Moran M, Delgado J, Gonzalez B, Manso R, Megias A. Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training. Acta Physiol Scand. 2004;180:157-166. https://doi.org/10.1111/j.0001-6772.2003.01244.x
  22. Radak Z, Taylor AW, Ohno H, Goto S. Adaptation to exerciseinduced oxidative stress: from muscle to brain. Exerc Immunol Rev. 2001;7:90-107.
  23. Starnes JW, Taylor RP. Exercise-induced cardioprotection: endogenous mechanisms. Med Sci Sports Exerc. 2007;39:1537-1543. https://doi.org/10.1249/mss.0b013e3180d099d4
  24. Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, Bacanamwo M, Chen YE, Schneider MD, Mangelsdorf DJ, Evans RM, Yang Q. Cardiac peroxisome proliferator-activated receptor ${\gamma}$ is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res. 2007;76:269-279. https://doi.org/10.1016/j.cardiores.2007.06.027
  25. Girnun GD, Domann FE, Moore SA, Robbins ME. Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol Endocrinol. 2002;16:2793-2801. https://doi.org/10.1210/me.2002-0020
  26. Fan W, Waizenegger W, Lin CS, Sorrentino V, He MX, Wall CE, Li H, Liddle C, Yu RT, Atkins AR, Auwerx J, Downes M, Evans RM. $PPAR{\delta}$ promotes running endurance by preserving glucose. Cell Metab. 2017;25:1186-1193.e4. https://doi.org/10.1016/j.cmet.2017.04.006
  27. Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, Yao X, Wang N, Huang Y. Metformin protects endothelial function in dietinduced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinaseperoxisome proliferator-activated receptor ${\delta}$ pathway. Arterioscler Thromb Vasc Biol. 2014;34:830-836. https://doi.org/10.1161/ATVBAHA.113.301938
  28. Cheang WS, Wong WT, Zhao L, Xu J, Wang L, Lau CW, Chen ZY, Ma RC, Xu A, Wang N, Tian XY, Huang Y. $PPAR{\delta}$ is required for exercise to attenuate endoplasmic reticulum stress and endothelial dysfunction in diabetic mice. Diabetes. 2017;66:519-528. https://doi.org/10.2337/db15-1657
  29. Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC, Holloszy JO. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A. 2008;105:7815-7820. https://doi.org/10.1073/pnas.0802057105
  30. Kraemer WJ, Flanagan SD, Volek JS, Nindl BC, Vingren JL, Dunn-Lewis C, Comstock BA, Hooper DR, Szivak TK, Looney DP, Maresh CM, Hymer WC. Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats. J Appl Physiol (1985). 2013;115:1641-1647. https://doi.org/10.1152/japplphysiol.00687.2013
  31. Lee S, Barton ER, Sweeney HL, Farrar RP. Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistancetrained rats. J Appl Physiol (1985). 2004;96:1097-1104. https://doi.org/10.1152/japplphysiol.00479.2003
  32. Jung S, Ahn N, Kim S, Byun J, Joo Y, Kim S, Jung Y, Park S, Hwang I, Kim K. The effect of ladder-climbing exercise on atrophy/hypertrophy- related myokine expression in middle-aged male Wistar rats. J Physiol Sci. 2015;65:515-521. https://doi.org/10.1007/s12576-015-0388-1
  33. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem. 1976;72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  34. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306:457-461. https://doi.org/10.1126/science.1103160
  35. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000;101:451-454. https://doi.org/10.1016/S0092-8674(00)80855-7
  36. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002;109:525-532. https://doi.org/10.1172/JCI0214550
  37. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-789. https://doi.org/10.1146/annurev.biochem.73.011303.074134
  38. Murlasits Z, Lee Y, Powers SK. Short-term exercise does not increase ER stress protein expression in cardiac muscle. Med Sci Sports Exerc. 2007;39:1522-1528. https://doi.org/10.1249/mss.0b013e3180cc25c7
  39. Gonzalez B, Hernando R, Manso R. Stress proteins of 70 kDa in chronically exercised skeletal muscle. Pflugers Arch. 2000;440:42-49.
  40. Vitadello M, Penzo D, Petronilli V, Michieli G, Gomirato S, Menabo R, Di Lisa F, Gorza L. Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FASEB J. 2003;17:923-925. https://doi.org/10.1096/fj.02-0644fje
  41. Zhang J, Jiang Y, Jia Z, Li Q, Gong W, Wang L, Wei D, Yao J, Fang S, Xie K. Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis. 2006;23:401-410.
  42. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16:1879-1886. https://doi.org/10.1096/fj.02-0367com
  43. Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T. cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun. 2000;274:350-354. https://doi.org/10.1006/bbrc.2000.3134
  44. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D 3rd, Li X, Guthikonda M, Rossi NF, Ding Y. The role of hypoxia-inducible factor-$1{\alpha}$, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg. 2011;114:92-101. https://doi.org/10.3171/2010.6.JNS10207
  45. Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun. 2002;296:350-354. https://doi.org/10.1016/S0006-291X(02)00881-1
  46. Terada S, Tabata I. Effects of acute bouts of running and swimming exercise on PGC-1alpha protein expression in rat epitrochlearis and soleus muscle. Am J Physiol Endocrinol Metab. 2004;286:E208-216. https://doi.org/10.1152/ajpendo.00051.2003
  47. Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol. 2005;25:10684-10694. https://doi.org/10.1128/MCB.25.24.10684-10694.2005
  48. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell. 2003;113:159-170. https://doi.org/10.1016/S0092-8674(03)00269-1
  49. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996;137:354-366. https://doi.org/10.1210/endo.137.1.8536636
  50. Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J. 2003;17:2299-2301. https://doi.org/10.1096/fj.03-0269fje
  51. Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M, Kodama T, Sakai J. Activation of peroxisome proliferator-activated receptor delta induces fatty acid betaoxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A . 2003;100:15924-15929. https://doi.org/10.1073/pnas.0306981100
  52. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004;2:e294. https://doi.org/10.1371/journal.pbio.0020294
  53. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357-368. https://doi.org/10.1101/gad.1177604
  54. Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576:1-14. https://doi.org/10.1016/S0167-4781(02)00343-3
  55. Koh JH, Hancock CR, Terada S, Higashida K, Holloszy JO, Han DH. $PPAR{\beta}$ is essential for maintaining normal levels of $PGC-1{\alpha}$ and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell Metab. 2017;25:1176-1185.e5. https://doi.org/10.1016/j.cmet.2017.04.029
  56. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119:573-581. https://doi.org/10.1172/JCI37048
  57. Barbosa MR, Sampaio IH, Teodoro BG, Sousa TA, Zoppi CC, Queiroz AL, Passos MA, Alberici LC, Teixeira FR, Manfiolli AO, Batista TM, Cappelli AP, Reis RI, Frasson D, Kettelhut IC, Parreirase-Silva LT, Costa-Neto CM, Carneiro EM, Curi R, Silveira LR. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression. Biochim Biophys Acta . 2013;1832:1591-1604. https://doi.org/10.1016/j.bbadis.2013.04.029
  58. Ding H, Heng B, He W, Shi L, Lai C, Xiao L, Ren H, Mo S, Su Z. Chronic reactive oxygen species exposure inhibits glucose uptake and causes insulin resistance in C2C12 myotubes. Biochem Biophys Res Commun. 2016;478:798-803. https://doi.org/10.1016/j.bbrc.2016.08.028
  59. Henriksen EJ. Effects of H2O2 on insulin signaling the glucose transport system in mammalian skeletal muscle. Methods Enzymol. 2013;528:269-278.
  60. Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9:2277-2293. https://doi.org/10.1089/ars.2007.1782
  61. Pinton P, Giorgi C, Pandolfi PP. The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ. 2011;18:1450-1456. https://doi.org/10.1038/cdd.2011.31
  62. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d'Azzo A. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to $Ca^{2+}$-dependent mitochondrial apoptosis. Mol Cell. 2009;36:500-511. https://doi.org/10.1016/j.molcel.2009.10.021
  63. Hayashi T, Rizzuto R, Hajnoczky G, Su TP. MAM: more than just a housekeeper. Trends Cell Biol. 2009;19:81-88. https://doi.org/10.1016/j.tcb.2008.12.002
  64. Hunter RB, Mitchell-Felton H, Essig DA, Kandarian SC. Expression of endoplasmic reticulum stress proteins during skeletal muscle disuse atrophy. Am J Physiol Cell Physiol. 2001;281:C1285-1290. https://doi.org/10.1152/ajpcell.2001.281.4.C1285
  65. Chen Y, Pandiri I, Joe Y, Kim HJ, Kim SK, Park J, Ryu J, Cho GJ, Park JW, Ryter SW, Chung HT. Synergistic effects of cilostazol and probucol on ER stress-induced hepatic steatosis via heme oxygenase- 1-dependent activation of mitochondrial biogenesis. Oxid Med Cell Longev. 2016;2016:3949813.
  66. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397-408. https://doi.org/10.1016/j.cell.2006.09.024
  67. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4:e76. https://doi.org/10.1371/journal.pmed.0040076
  68. Ballor DL. Effect of dietary restriction and/or exercise on 23-h metabolic rate and body composition in female rats. J Appl Physiol (1985). 1991;71:801-806. https://doi.org/10.1152/jappl.1991.71.3.801
  69. Dulloo AG, Girardier L. 24 hour energy expenditure several months after weight loss in the underfed rat: evidence for a chronic increase in whole-body metabolic efficiency. Int J Obes Relat Metab Disord. 1993;17:115-123.
  70. McCarter RJ, Palmer J. Energy metabolism and aging: a lifelong study of Fischer 344 rats. Am J Physiol. 1992;263:E448-452.
  71. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314-317. https://doi.org/10.1126/science.1117728
  72. Kempen GI, Miedema I, van den Bos GA, Ormel J. Relationship of domain-specific measures of health to perceived overall health among older subjects. J Clin Epidemiol. 1998;51:11-18. https://doi.org/10.1016/S0895-4356(97)00234-5
  73. Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999;13:2051-2060. https://doi.org/10.1096/fasebj.13.14.2051

피인용 문헌

  1. Comparison of endoplasmic reticulum stress and mitochondrial biogenesis responses after 12 weeks of treadmill running and ladder climbing exercises in the cardiac muscle of middle-aged obese rats vol.51, pp.10, 2017, https://doi.org/10.1590/1414-431x20187508
  2. PKR Promotes Oxidative Stress and Apoptosis of Human Articular Chondrocytes by Causing Mitochondrial Dysfunction through p38 MAPK Activation-PKR Activation Causes Apoptosis in Human Chondrocytes vol.8, pp.9, 2017, https://doi.org/10.3390/antiox8090370
  3. Consumption of a high-fat-high-sucrose diet partly diminishes mechanical and structural adaptations of cardiac muscle following resistance training vol.25, pp.2, 2021, https://doi.org/10.20463/pan.2021.0009