Acknowledgement
Supported by : National Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China
References
- Alfano, M. and Pagnotta, L. (2007), "A non-destructive technique for the elastic characterization of thin isotropic plates", Ndt. & E. Int., 40(2), 112-120. https://doi.org/10.1016/j.ndteint.2006.10.002
- ASTM, E. (2001), "Standard test method for dynamic Young's modulus, shear modulus, and Poisson's ratio by sonic resonance", Annual Book of ASTM Standards 2001.
- Bahr, O., Schaumann, P., Bollen, B. and Bracke, J. (2013), "Young's modulus and Poisson's ratio of concrete at high temperatures: Experimental investigations", Mater. Design, 45, 421-429. https://doi.org/10.1016/j.matdes.2012.07.070
- Behmanesh, I. and Moaveni, B. (2016), "Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification", J. Sound. Vib., 374, 92-110. https://doi.org/10.1016/j.jsv.2016.03.022
- Chiu, C.C. and Case, E.D. (1991), "Elastic modulus determination of coating layers as applied to layered ceramic composites", Mat. Sci. Eng. A - Struct., 132, 39-47. https://doi.org/10.1016/0921-5093(91)90359-U
- De Oliveira, A.P.N., Vilches, E.S., Soler, V.C. and Villegas, F.A.G. (2012), "Relationship between Young's modulus and temperature in porcelain tiles", J. Eur. Ceram. Soc., 32(11), 2853-2858. https://doi.org/10.1016/j.jeurceramsoc.2011.09.019
- Guillot, F.M. and Trivett, D.H. (2011), "Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young's moduli as a function of temperature and hydrostatic pressure", J. Sound. Vib., 330, 3334-3351. https://doi.org/10.1016/j.jsv.2011.02.003
- Hauert, A., Rossoll, A. and Mortensen, A. (2009), "Young's modulus of ceramic particle reinforced aluminium: Measurement by the Impulse Excitation Technique and confrontation with analytical models", Compos. Part. A-Appl. S., 40(4),524-529. https://doi.org/10.1016/j.compositesa.2009.02.001
- Jiang, B.Z, Xiang, J.W. and Wang, Y.X. (2016), "Rolling bearing fault diagnosis approach using probabilistic principal component analysis denoising and cyclic bispectrum", J. Vib. Control, 22(10), 2420-2433. https://doi.org/10.1177/1077546314547533
- Kubojima, Y., Kato, H., Tonosaki, M. and Sonoda, S. (2015), "Measuring young's modulus of a wooden bar using flexural vibration without measuring its weight", Bio Resources, 11(1), 800-810.
- Li, J., Hao, H., and Lo, J.V. (2015), "Structural damage identification with power spectral density transmissibility: numerical and experimental studies", Smart Struct. Syst., 15(1), 15-40. https://doi.org/10.12989/sss.2015.15.1.015
- Liu, J.X., Zhang, X.W. and Chen, X.F. (2016a), "Modeling and active vibration control of a coupling system of structure and actuators", J. Vib. Control, 22(2), 382-395. https://doi.org/10.1177/1077546314532860
- Lugovy, M., Slyunyayev, V., Orlovskaya, N., Mitrentsis, E., Aneziris, C.G., Graule, T. and Kuebler, J. (2016), "Temperature dependence of elastic properties of ZrB 2-SiC composites", Ceram. Int., 42(2),2439-2445. https://doi.org/10.1016/j.ceramint.2015.10.044
- Mei, C. and Sha, H. (2016), "Analytical and experimental study of vibrations in simple spatial structures", J. Vib. Control, 22(17), 3711-3735. https://doi.org/10.1177/1077546314565807
- Munoz-Abella, B., Rubio, L. and Rubio, P. (2012), "A nondestructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms", Smart Struct. Syst., 10(1), 47-65. https://doi.org/10.12989/sss.2012.10.1.047
- Pabst, W., Gregorova, E., Klouzek, J., Klouzkova, A., Zemenova, P., Kohoutkova, M. and Vsiansky, D. (2016), "High-temperature Young's moduli and dilatation behavior of silica refractories", J. Eur. Ceram. Soc., 36(1), 209-220. https://doi.org/10.1016/j.jeurceramsoc.2015.09.020
- Popovics, J.S., Kolluru, S.V. and Shah, S.P. (2000), "Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinders", Cement, Concrete Aggr., 22(2), 81-89.
- Pradhan, R., Dhara, A.K., Panchadhyayee, P. and Syam, D. (2015), "Determination of Young's modulus by studying the flexural vibrations of a bar: experimental and theoretical approaches", Eur. J. Phys., 37(1), 015001. https://doi.org/10.1088/0143-0807/37/1/015001
- Roebben, G. and Omer, V.D.B. (2002), "Recent advances in the use of the impulse excitation technique for the characterisation of stiffness and damping of ceramics, ceramic coatings and ceramic laminates at elevated temperature", Key Eng. Mater., 206, 621-624.
- Roebben, G., Bollen, B., Brebels, A., Van Humbeeck, J. and Van der Biest, O. (1997), "Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature" Rev. Sci. Instrum., 68(12), 4511-4515. https://doi.org/10.1063/1.1148422
- Rupitsch, S.J., IIg, J., Sutor, A., Lerch, R. and Dollinger, M. (2011), "Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models", J. Sound. Vib., 330(18), 4447-4459. https://doi.org/10.1016/j.jsv.2011.05.008
- Schmidt, R., Wicher, V. and Tilgner, R. (2005), "Young's modulus of moulding compounds measured with a resonance method", Polym. Test., 24(2), 197-203. https://doi.org/10.1016/j.polymertesting.2004.08.010
- Soltanimaleki, A., Foroutan, M. and Alihemmati, J., (2016), "Free vibration analysis of functionally graded fiber reinforced cylindrical panels by a three dimensional meshfree model", J. Vib. Control, 22(19), 4087-4098. https://doi.org/10.1177/1077546315570717
- Sousa, F.J., Dal Bo, M., Guglielmi, P.O., Janssen, R. and Hotza, D. (2014), "Characterization of Young's modulus and fracture toughness of albite glass by different techniques", Ceram. Int., 40(7), 10893-10899. https://doi.org/10.1016/j.ceramint.2014.03.085
- Spinner, S., Reichard, T.W. and Tefft, W.E., (1960), "A comparison of experimental and theoretical relations between young's modulus and the flexural and longitudinal resonance frequencies of uniform bars", J. Res. Natl. Bur. Stand. Phys. Chem., 64(2), 147-155.
- Swarnakar, A.K., Donzel, L., Vleugels, J. and Biest, O.V.D. (2009), "High temperature properties of ZnO ceramics studied by the impulse excitation technique", J. Eur. Ceram. Soc., 29(14), 2991-2998. https://doi.org/10.1016/j.jeurceramsoc.2009.04.039
- Tognana, S., Salgueiro, W., Somoza, A. and Marzocca, A. (2010), "Measurement of the Young's modulus in particulate epoxy composites using the impulse excitation technique", Mat. Sci. Eng. A-Struct., 527(18), 4619-4623. https://doi.org/10.1016/j.msea.2010.04.083
- Unal, O. (2016), "Optimization of shot peening parameters by response surface methodology", Surf. Coat. Tech., 305, 99-109. https://doi.org/10.1016/j.surfcoat.2016.08.004
- Wang, Y.M., Chen, X.F. and He, Z.J. (2011), "Daubechies wavelet finite element method and genetic algorithm for detection of pipe crack", Nondestruct. Test. Eva., 26(1), 87-99. https://doi.org/10.1080/10589759.2010.521826
- Xiang, J.W., Matsumoto, T. and Long, J.Q. (2013), "Identification of damage locations based on operating deflection shape", Nondestruct. Test. Eva., 28(2), 166-180 https://doi.org/10.1080/10589759.2012.716437
- Xiang, J.W., Matsumoto, T., Long, J.Q., Wang, Y.X. and Jiang, Z.S. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335
- Xiang, J.W., Nackenhorst, U., Wang, Y.X., Jiang, Y.Y., Gao, H.F. and He, Y.M. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
- Yang, Z.B., Chen, X.F. and Jiang, Y.Y. (2014a), "Generalised local entropy analysis for crack detection in beam-like structures", Nondestruct. Test. Eva., 29(2), 133-153. https://doi.org/10.1080/10589759.2014.904312
- Yang, Z.B., Chen, X.F., Li, X., Jiang, Y.Y., Miao, H.H. and He, Z.J. (2014b), "Wave motion analysis in arch structures via wavelet finite element method", J. Sound. Vib., 333(2), 446-469. https://doi.org/10.1016/j.jsv.2013.09.011
- Yang, Z.B., Chen, X.F., Yu, J., Liu, R., Liu, Z.H. and He, Z.J. (2013), "A damage identification approach for plate structures based on frequency measurements", Nondestruct. Test. Eva., 28(4), 321-341. https://doi.org/10.1080/10589759.2013.801472
- Yang, Z.B., Radzienski, M., Kudela, P. and Ostachowicz, W. (2017a), "Fourier spectral-based modal curvature analysis and its application to damage detection in beams", Mech. Syst. Signal. Pr., 84, 763-781. https://doi.org/10.1016/j.ymssp.2016.07.005
- Yang, Z.B., Radzienski, M., Kudela, P., and Ostachowicz, W. (2017b). "Damage detection in beam-like composite structures via Chebyshev pseudo spectral modal curvature", Compos. Struct., 168, 1-12. https://doi.org/10.1016/j.compstruct.2017.01.087
- Zeng, X., Wen, S., Li, M. and Xie, G. (2014), "Estimating Young's modulus of materials by a new three-point bending method", Adv. Mater. Sci. Eng., 2014(1), 1-9.
- Zhang, E., Chazot, J.D., Antoni, J. and Hamdi, M. (2013), "Bayesian characterization of Young's modulus of viscoelastic materials in laminated structures", J. Sound. Vib., 332(16), 3654-3666. https://doi.org/10.1016/j.jsv.2013.02.032
- Zhang, X., Gao, D.Y., Liu, Y. and Du, X. (2015), "A multiresolution analysis based finite element model updating method for damage identification", Smart Struct. Syst., 16(1), 47-65. https://doi.org/10.12989/sss.2015.16.1.047
- Zhang, X.W., Chen, X.F., You, S.Q. and He, Z. (2015), "Active control of dynamic frequency responses for shell structures", J. Vib. Control, 21(14), 2813-2824. https://doi.org/10.1177/1077546313517588
- Zhang, X.W., Gao, R.X., Yan, R.Q., Chen, X.F., Sun, C. and Yang, Z.B. (2016b), "Multivariable wavelet finite elementbased vibration model for quantitative crack identification by using particle swarm optimization", J. Sound. Vib., 375, 200-216. https://doi.org/10.1016/j.jsv.2016.04.018
Cited by
- Structural Dynamic Load and Parameter Identification Based on Dummy Measurements of Displacement vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8886714