References
- World Health Organization. Anti-tuberculosis drug resistance in the world. Fourth Global Report. The WHO/IAUTLD Global Project on Anti-tuberculosis Drug Resistance Surveillance, 2002-2007. Geneva: World Health Organization; 2008.
- Winder F. Catalase and peroxidase in mycobacteria: possible relationship to the mode of action of isoniazid. Am Rev Respir Dis 1960;81:68-78. https://doi.org/10.1164/arrd.1960.81.1P1.68
- Zhang Y, Heym B, Allen B, Young D, Cole S. The catalaseperoxidase gene and isoniazid resistance of Mycobacterium tuberculosis . Nature 1992;358:591-3. https://doi.org/10.1038/358591a0
- Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis . Science 1994;263:227-30. https://doi.org/10.1126/science.8284673
- Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis : 1998 update. Tuber Lung Dis 1998;79:3-29. https://doi.org/10.1054/tuld.1998.0002
- Payton M, Auty R, Delgoda R, Everett M, Sim E. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis : increased expression results in isoniazid resistance. J Bacteriol 1999;181:1343-7.
- Upton AM, Mushtaq A, Victor TC, Sampson SL, Sandy J, Smith DM, et al. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 2001;42:309-17. https://doi.org/10.1046/j.1365-2958.2001.02648.x
- Bhakta S, Besra GS, Upton AM, Parish T, Sholto-Douglas-Vernon C, Gibson KJ, et al. Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. J Exp Med 2004;199:1191-9. https://doi.org/10.1084/jem.20031956
- Evans DA, Manley KA, Mc KV. Genetic control of isoniazid metabolism in man. Br Med J 1960;2:485-91. https://doi.org/10.1136/bmj.2.5197.485
- Hickman D, Palamanda JR, Unadkat JD, Sim E. Enzyme kinetic properties of human recombinant arylamine N-acetyltransferase 2 allotypic variants expressed in Escherichia coli . Biochem Pharmacol 1995;50:697-703. https://doi.org/10.1016/0006-2952(95)00182-Y
- Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD, et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 1997;155:1717-22. https://doi.org/10.1164/ajrccm.155.5.9154882
- Vatsis KP, Weber WW, Bell DA, Dupret JM, Evans DA, Grant DM, et al. Nomenclature for N-acetyltransferases. Pharmacogenetics 1995;5:1-17. https://doi.org/10.1097/00008571-199502000-00001
- Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M, et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 2005;49:1733-8. https://doi.org/10.1128/AAC.49.5.1733-1738.2005
- Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol 2013;69:1091-101. https://doi.org/10.1007/s00228-012-1429-9
- Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002;35:883-9. https://doi.org/10.1053/jhep.2002.32102
- Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R, et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 2000;4:256-61.
- Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 2006;174:935-52. https://doi.org/10.1164/rccm.200510-1666ST
- Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis . Infect Genet Evol 2016;45:474-92. https://doi.org/10.1016/j.meegid.2016.09.004
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402. https://doi.org/10.1093/nar/25.17.3389
- Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, et al. Structure of arylamine N-acetyltransferase from Mycobacterium tuberculosis determined by cross-seeding with the homologous protein from M. marinum: triumph over adversity. Acta Crystallogr D Biol Crystallogr 2013;69(Pt 8):1433-46. https://doi.org/10.1107/S0907444913015126
- Wu H, Dombrovsky L, Tempel W, Martin F, Loppnau P, Goodfellow GH, et al. Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases. J Biol Chem 2007;282:30189-97. https://doi.org/10.1074/jbc.M704138200
- Sali A. MODELLER: implementing 3D protein modeling. mc2, Vol. 2. San Diego: Molecular Simulations Inc.; 1995.
-
Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by
$C{\alpha}$ geometry:$\phi$ ,$\psi$ and$C{\beta}$ deviation. Proteins 2003;50:437-50. https://doi.org/10.1002/prot.10286 -
Krissinel E, Henrick K. Protein structure comparison in 3D based on secondary structure matching (PDBeFold) followed by
$C{\alpha}$ alignment, scored by a new structural similarity function. In: Proceedings of the 5th International Conference on Molecular Structural Biology; 2003 Sep 3-7; Vienna, Austria; p.88. - Advanced Chemistry Development. ACD/ChemSketch, ver. 10.0. Toronto: Advanced Chemistry Development; 2006.
- Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 1995;245:43-53. https://doi.org/10.1016/S0022-2836(95)80037-9
- Accelrys Inc. Discovery studio, ver. 2. San Diego: Accelrys Inc.; 2007.
- Abuhammad AM, Lowe ED, Fullam E, Noble M, Garman EF, Sim E. Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site. Protein Cell 2010;1:384-92. https://doi.org/10.1007/s13238-010-0037-7
- Fullam E, Westwood IM, Anderton MC, Lowe ED, Sim E, Noble ME. Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine Nacetyltransferase. J Mol Biol 2008;375:178-91. https://doi.org/10.1016/j.jmb.2007.10.019
- Sandy J, Mushtaq A, Kawamura A, Sinclair J, Sim E, Noble M. The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis : an enzyme which inactivates the antitubercular drug, isoniazid. J Mol Biol 2002;318:1071-83. https://doi.org/10.1016/S0022-2836(02)00141-9
- Dassault Systemes. BIOVIA, Discovery Studio Modeling Environment. Release 4.5. San Diego: Dassault Systemes; 2015.
Cited by
- Benefits of Therapeutic Drug Monitoring of First Line Antituberculosis Drugs vol.20, pp.2, 2017, https://doi.org/10.2478/acm-2020-0006
- Acetylator Status Among Newly Diagnosed and Recurrent Tuberculosis Patients from Kupang, Eastern Part of Indonesia vol.14, pp.None, 2017, https://doi.org/10.2147/pgpm.s311952
- Phenylisoxazole-3/5-Carbaldehyde Isonicotinylhydrazone Derivatives: Synthesis, Characterization, and Antitubercular Activity vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6014093
- Genetic characterization of N-acetyltransferase 2 variants in acquired multidrug-resistant tuberculosis in Indonesia vol.22, pp.3, 2017, https://doi.org/10.2217/pgs-2020-0163
- Development of a limited sampling strategy for the estimation of isoniazid exposure considering N-acetyltransferase 2 genotypes in Korean patients with tuberculosis vol.127, pp.None, 2021, https://doi.org/10.1016/j.tube.2021.102052