DOI QR코드

DOI QR Code

Removal and Regrowth Inhibition of Microcystis aeruginosa using Artemisia asiatica Extracts

쑥 추출액을 이용한 Microcystis aeruginosa 제거 및 성장억제 연구

  • Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University)
  • 최희정 (가톨릭관동대학교 보건환경학과)
  • Received : 2017.03.09
  • Accepted : 2017.07.11
  • Published : 2017.07.30

Abstract

Microcystis aeruginosa (M. aeruginosa) is a cyanobacterium species that can form harmful algal blooms in freshwater bodies worldwide. The use of Artemisia asiatica extracts to control M. aeruginosa inhibition will be environmentally friendly and promising. Artemisia asiatica extracts removed successfully upto 88% of M. aeruginosa pH 8 at $25^{\circ}C$ of temperature. These results was indicated that the amount of 2.24 g/L Artemisia asiatica extracts was removed 1g dryweight/L of M. aeruginosa. The kinetic data showed substrate inhibition kinetics and maximum growth rate was obtained when the M. aeruginosa was grown in medium containing 2.5 g/L of initial concentration of Artemisia asiatica extracts. In the various growth control models, Luong model showed the highest correlation coefficient of 0.9916. Therefore, the Luong model was the most suitable control model for the growth control of M. aruginosa using Artemisia asiatica extracts. In conclusion, the growth control of M. aruginosa using Artemisia asiatica extracts can be applied in the field without controlling the temperature and pH of rivers and streams, and it is possible to control the growth of M. aruginosa efficiently in a short time. The natural extract, Artemisia asiatica extracts, can be a promising inhibition due to its high efficiency and low dose requirements.

Keywords

References

  1. Badjeck, M. C., Allison, E. H., Halls, A. S., and Dulvy, N. K. (2010). Impacts of Climate Variability and Change on Fishery-based Livehoods, Marine Policy, 34, 375-383. https://doi.org/10.1016/j.marpol.2009.08.007
  2. Bora, K. S. and Sharma, A. (2011). The genus Artemisia: A Comprehensive Review, Pharmaceutical Biology, 49(1), 101-109. https://doi.org/10.3109/13880209.2010.497815
  3. Carvalho, M. S., Alves, B. R. R., Silva, M. F., Bergamasco, R., Coral, L. A., and Bassetti, F. J. (2016). $CaCl_2$ Applied to the Extraction of Moringa oleifera Seeds and the Use for Microcystis aeruginosa Removal, Chemical Engineering Journal, 304, 469-475. https://doi.org/10.1016/j.cej.2016.06.101
  4. Chen, L., Chen, J., Zhang, X., and Xie, P. (2016). A Review of Reproductive Toxicity of Microcystins, Journal of Hazardous Materials, 301, 381-399. https://doi.org/10.1016/j.jhazmat.2015.08.041
  5. Chen, J., Ma, J., Cao, W., Wang, P., Tong, S., and Sun, Y. (2009). Sensitivity of Green and Blue-green Algae to Methyl Tert-butyl Ether, Journal of Environmental Sciences, 21(4), 514-519. https://doi.org/10.1016/S1001-0742(08)62301-3
  6. Chen, J. Z., Zhang, H. Y., Han, Z. P., Ye, J. Y., and Liu, Z. (2012). The Influence of Aquatic Macrophytes on Microcystis aeruginosa Growth, Ecological Engineering, 42, 130-133. https://doi.org/10.1016/j.ecoleng.2012.02.021
  7. Choi, Y. K. and Ha, B. J. (2014). Comparison of the Physicochemical Characteristics and Antibacterial Efficiencies of the Extracts obtained from Artemisia princeps var. Orientals, Koran Journal of Aesthetic and Cosmetology, 12(5), 685-692. [Korean Literature]
  8. Choi, H. J. (2016). Inhibition of the Growth of Harmful Cyanobacterial Blooms, Microcystis Aeruginosa Using Caffeine, Journal of Korean Society of Water Science and Technology, 24(5), 111-122. [Korean Literature]
  9. Choi, H. J. (2017). Removal of Microcystis aeruginosa using Pine Needle Extracts, Journal of Korean Society on Water Environment, 33(1), 8-14. [Korean Literature] https://doi.org/10.15681/KSWE.2017.33.1.8
  10. Correa-Ferreira, M. L., Noleto, G. R., and Petkowicz, C. L. O. (2014). Artemisia absinthium and Artemisia vulgaris: A Comparative Study of Infusion Polysaccharides, Carbohydrate Polymers, 102(15), 738-745. https://doi.org/10.1016/j.carbpol.2013.10.096
  11. Debasmita, N. and Rajasimman, M. (2013). Optimization and Kinetics Studies on Biodegradation of Atrazine Using mixed Microorganisms, Alexandria Engineering Journal, 52(3), 499-505. https://doi.org/10.1016/j.aej.2013.06.008
  12. Gilbert, P. M., Anderson, D. M., Gentien, P., Graneli, E., and Sellner, K. G. (2005). The Global, complex Phenomena of Harmful Algal Blooms, Oceanography, 18(2), 136-147. https://doi.org/10.5670/oceanog.2005.49
  13. Grattan, L. M., Holobaugh, S., and Jr, J. G. M. (2016). Review: Harmful Algal Blooms and Public Health, Harmful Algae, 57, 2-8. https://doi.org/10.1016/j.hal.2016.05.003
  14. Gu, N., Gao, J., Li, H., Wu, Y., Ma, Y., and Wang, K. (2016). Montmorillonite-supported with $Cu_2O$ Nanoparticles for Damage and Removal of Microcystis aeruginosa under Visible Light, Applied Clay Science, 132-133, 79-89. https://doi.org/10.1016/j.clay.2016.05.017
  15. Hallegraeff, G. M. (2010). Review: Ocean Climate Change, Phytoplankton Community Responses, and Harmful Algal Blooms: A Formidable Predictive Challenge, Journal of Phycology, 46, 220-235. https://doi.org/10.1111/j.1529-8817.2010.00815.x
  16. Halmi, M. I. E., Shukor, M. S., and Shukor, M. Y. (2014). Evaluation of Several Mathematical Models for Fitting the Growth and Kinetics of the Catechol-degrading Candida parapsilopsis: Part 2, Journal of Environmental Bopremediation & Toxicology, 2(2), 53-57.
  17. Jeong, D., Yi, Y. S., Sung, G. H., Yang, W. S., Park, J. G., Yoon, K. J., Yoon, D. H., Song, C., Lee, Y., Rhee, M. H., Kim, T. W., Kim, J. H., and Cho, J. Y. (2014). Antiinflammatory Activities and Mechanisms of Artemisia asiatica Ethanol Extract, Journal of Ethnopharmacology, 152(3), 487-496. https://doi.org/10.1016/j.jep.2014.01.030
  18. Jin, Y., Pei, H., Hu, W., Zhu, Y., Xu, H., Ma, C., Sun, J., and Li, H. (2017). A Promising Application of Chitosan Quaternary Ammonium Salt to Removal of Microcystis aeruginosa Cells from Drinking Water, Science of the Total Environment, 583, 496-504. https://doi.org/10.1016/j.scitotenv.2017.01.104
  19. Kang, C. S. (2014). Green Algae Removal, Technology, but costly, JoongAng llbo, http://news.joins.com/article/15373104, accessed July, 2014
  20. Melguizo, D. M., Diaz-de-Cerio, E., Quirantes-Pine, R., Svarc-Gajic, J., and Segura-Carretero, A. (2014). The Potential of Artemisia vulgaris Leaves as a Source of Antioxidant Phenolic Compounds, Journal of Functional Foods, 10, 192-200. https://doi.org/10.1016/j.jff.2014.05.019
  21. Meullemiestre, A., Petitcolas, E., Maache-Rezzoug, Z., Chemat, F., and Rezzoug, S. A. (2016). Impact of Ultrasound on Solid-Liquid Extraction of phenolic Compounds from Maritime Pine Sawdust Waste. Kinetics, Optimization and Large Scale Experiments, Ultrasonics Sonochemistry, 28, 230-239. https://doi.org/10.1016/j.ultsonch.2015.07.022
  22. Nakai, S., Inoue, Y., Hosomi, M., and Murakami, A. (2000). Myriophyllum spicatum-released Allelopathic Polyphenols Inhibiting Growth of Blue-green Algae Microcystis aeruginosa, Water Research, 34(11), 3026-3032. https://doi.org/10.1016/S0043-1354(00)00039-7
  23. Owhondah, R. O., Walker, M., Ma, L., Nimmo, B., Ingham, D. B., Poggio, D., and Pourkashanian, M. (2016). Assessment and Parameter Identification of simplified Models to describe the Kinetics of Semi-Continuous Biomethane Production from Anaerobic Digestion of Green and Food Waste, Bioprocess and Biosystem Engineering, 39, 977-992. https://doi.org/10.1007/s00449-016-1577-x
  24. Paerl, H. (2009). Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms, Environmental Microbiology Reports, 1, 27-37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
  25. Paerl, P. (2012). Climate Change: Links to Global Expansion of Harmful Cyanobacteria, Water Research, 46, 1349-1363. https://doi.org/10.1016/j.watres.2011.08.002
  26. Pei, H. Y., Ma, C. X., Hu, W. R., and Sun, F. (2014). The Behaviors of Microcystis aeruginosa Cells and Extracellular Microcystins during Chitosan Flocculation and Flocs Storage Processes, Bioresource Technology, 151, 314-322. https://doi.org/10.1016/j.biortech.2013.10.077
  27. Ralston, E. P., Kite-Powell, H., and Beet, A. (2011). An Estimate of the Cost of Acute Health Effects from Food- and Waste-Borne Marine Pathogens and Toxins in the USA, Journal of Water Health, 9(4), 680-694. https://doi.org/10.2166/wh.2011.157
  28. Ryu, S. R. (2011) Study on the Manufacturing Process of Artemisia asiatica carbonized Organic Solution(Wormwood Axetic Acid) by Development of Carbonize Equipment, Journal of Chosun Natural Science, 4(1), 15-22.
  29. Sengco, M. R. and Anderson, D. M. (2004). Controlling Harmful Algal Blooms through Clay Flocculation, Journal of Eukaryotic Microbiology, 51, 169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  30. Wang, Z., Chen, Y., Xie, P., Shang, R., and Ma, J. (2016). Removal of Microcystis aeruginosa by UV-activated Persulfate: Performance and Characteristics, Chemical Engineering Journal, 300, 245-253. https://doi.org/10.1016/j.cej.2016.04.125
  31. Wu, Z., Shen, H., Ondruschka, B., Zhang, Y., Wang, W., and Bremner, D. H. (2012). Removal of Blue-green Algae Using the Hybrid Method of Hydrodynamic Cavitation and Ozonation, Journal of Hazardous Materials, 235-236, 152-158 https://doi.org/10.1016/j.jhazmat.2012.07.034