References
- Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309
- Abouelregal, A.E. and Zenkour, A.M. (2016), "Generalized thermoelastic interactions due to an inclined load at a two-temperature half-space", J. Theor. Appl. Mech., 54(3), 827-838.
- Allam, M.N., Elsibai, K.A. and Abouelergal, A.E. (2002), "Thermal stresses in a harmonic field for an infinite body with a circular cylindrical hole without energy dissipation", J. Therm. Stress., 25(1), 57-68. https://doi.org/10.1080/014957302753305871
- Biot, M. (1952), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
- Boschi, E. and Iesan, D. (1973), "A generalized theory of linear micropolar thermoelasticity", Mecc., 8(3), 154-157. https://doi.org/10.1007/BF02128724
- Carrera, E., Abouelregal, A.E., Abbas, I.A. and Zenkour, A.M. (2015), "Vibrational analysis for an axially moving microbeam with two temperatures", J. Therm. Stress., 38(6), 569-590. https://doi.org/10.1080/01495739.2015.1015837
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Z. Angew. Math. Phys., 19(4), 614-627. https://doi.org/10.1007/BF01594969
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Z. Angew. Math. Phys., 19(6), 969-970. https://doi.org/10.1007/BF01602278
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Z. Angew. Math. Phys., 20(1), 107-112. https://doi.org/10.1007/BF01591120
- El-Karamany, A.S. and Ezzat, M.A. (2004), "Analytical aspects in boundary integral equation formulation for the generalized linear micropolar thermoelasticity", J. Mech. Sci., 46(3), 389-409. https://doi.org/10.1016/j.ijmecsci.2004.03.013
- El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phase-lag linear micropolar thermoelasticity theory", Eur. J. Mech. A/Sol., 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011
- Eringen, A.C. (1970), Foundations of Micropolar Thermoelasticity, Course of Lectures No. 23, CSIM Udine Springer.
- Eringen, A.C. (1971), "Micropolar elastic solids with stretch", Ari. Kitabevi Matbassi, 24, 1-18.
- Eringen, A.C. (1984), "Plane waves in nonlocal micropolar elasticity", J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5
- Green, A.E. and Lindsay, K.A. (1971), "Thermoelasticity", J. Elast., 2, 1-7.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London, Series A, 432, 171-194. https://doi.org/10.1098/rspa.1991.0012
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 252-264.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-209. https://doi.org/10.1007/BF00044969
- Gurtin, M.E. and Williams, W.O. (1966), "On the clausius-duhem inequality", Z. Angew. Math. Phys., 17(5), 626-633. https://doi.org/10.1007/BF01597243
- Kumar, R. and Singh, B. (1996), "Wave propagation in a micropolar generalized thermoelastic body with stretch", Proc. Ind. Acad. Sci. (Math. Sci.), 106, 183-199. https://doi.org/10.1007/BF02837172
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Nath, S., Sengupta, P.R. and Debnath, L. (1998), "Magneto-thermoelastic surface waves in micropolar elastic media", Comput. Math. Appl., 35(3), 47-55. https://doi.org/10.1016/S0898-1221(97)00278-2
- Nowacki, M. (1966), Couple-Stresses in the Theory of Thermoelasticity, Proc. IUTAM Symposia, Vienna, Springer-Verlag, 259-278.
- Othman, M.I.A. and Singh, B. (2007), "The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories", J. Sol. Struct., 44(9), 2748-2762. https://doi.org/10.1016/j.ijsolstr.2006.08.016
- Quintanilla, R. (2004), "On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures", Acta Mech., 168(1), 61-73. https://doi.org/10.1007/s00707-004-0073-6
- Quintanilla, R. and Jordan, P.M. (2009), "A note on the two temperature theory with dual-phase-lag delay: Some exact solutions", Mech. Res. Commun., 36(7), 796-803. https://doi.org/10.1016/j.mechrescom.2009.05.002
- Scalia, A. (1990), "On some theorems in the theory of micropolar thermoelasticity", J. Eng. Sci., 28(3), 181-189. https://doi.org/10.1016/0020-7225(90)90122-Y
- Sherief, H.H., Hamza, F.A. and El-Sayed, A.M. (2005), "Theory of generalized micropolar thermoelasticity and an axisymmetric half-space problem", J. Therm. Stress., 28(4), 409-437. https://doi.org/10.1080/01495730590916641
- Tauchert, T.R., Claus, W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", J. Eng. Sci., 6(1), 37-47. https://doi.org/10.1016/0020-7225(68)90037-2
- Tzou, D.Y. (1995a), "A unified approach for heat conduction from macro-to micro-scales", J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329
- Tzou, D.Y. (1995b), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725
- Tzou, D.Y. (1996), "Macro-to-microscale heat transfer: The lagging behavior", Taylor & Francis, Washington, U.S.A.
- Youssef, H.M. (2006), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101
- Zenkour, A.M. and Abouelregal, A.E. (2014a), "State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction", Z. Angew. Math. Phys., 65(1), 149-164. https://doi.org/10.1007/s00033-013-0313-5
- Zenkour, A.M. and Abouelregal, A.E. (2014b), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
- Zenkour, A.M. and Abouelregal, A.E. (2015), "The fractional effects of a two-temperature generalized thermoelastic semi-infinite solid induced by pulsed laser heating", Arch. Mech., 67(1), 53-73.
Cited by
- The Fractional Strain Influence on a Solid Sphere under Hyperbolic Two-Temperature Generalized Thermoelasticity Theory by Using Diagonalization Method vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6644133