DOI QR코드

DOI QR Code

Three-dimensional effective properties of layered composites with imperfect interfaces

  • Sertse, Hamsasew (School of Aeronautics and Astronautics, Purdue University) ;
  • Yu, Wenbin (School of Aeronautics and Astronautics, Purdue University)
  • 투고 : 2017.06.02
  • 심사 : 2017.07.04
  • 발행 : 2017.11.25

초록

The objective of this paper is to obtain three-dimensional (3D) effective properties for layered composites with imperfect interfaces using mechanics of structure genome. The imperfect interface is modeled using linear traction-displacement model that allows small infinitesimal displacement jump across the interface. The predictions obtained from the current analysis are compared with the 3D finite element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals that in-plane longitudinal and shear moduli, and all Poisson's ratios are observed to be not affected by the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly influenced by interfacial stiffness.

키워드

참고문헌

  1. Alvarez-Lima, R., Diaz-Diaz, A., Caron, J.F. and Chataigner, S. (2012a), "Enhanced layerwise model for laminates with imperfect interfaces part 1: Equations and theoretical validation", Compos. Struct., 94(4), 1694-1702. https://doi.org/10.1016/j.compstruct.2011.12.007
  2. Alvarez-Lima, R., Diaz-Diaz, A., Caron, J.F. and Chataigner, S. (2012b), "Enhanced layerwise model for laminates with imperfect interfaces part 2: Experimental validation and failure prediction", Compos. Struct., 94(3), 1032-1037. https://doi.org/10.1016/j.compstruct.2011.11.023
  3. Amor, M. and Ghozlen, M. (2007), "Frequency limit determination for the homogenization", Mech. Res. Commun., 34(5), 488-496. https://doi.org/10.1016/j.mechrescom.2007.06.002
  4. Backus, G. (1962), "Long-wave elastic anisotropy produced by horizontal layering", J. Geophys. Res., 67, 4427-4440. https://doi.org/10.1029/JZ067i011p04427
  5. Bednarcyk, A. and Arnold, M. (2001), "Micromechanics based deformation and failure prediction for longitudinally reinforced titanium composites", Compos. Sci. Technol., 61(2), 705-729. https://doi.org/10.1016/S0266-3538(01)00004-5
  6. Bendsoe, M. (1989), "Optimal shape design as a material distribution problem", Struct. Optim., 1(4), 193-202. https://doi.org/10.1007/BF01650949
  7. Bensoussan, A., Lions, J. and Papanicolaou, G. (1978), Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, the Netherlands.
  8. Berdichevsky, V. (2009), Variational Principles of Continuum Mechanics, Springer Berlin.
  9. Braga, A. and Herrmann, G. (1992), "Floquet waves in anisotropic periodically layered composites", J. Acoust. Soc. Am., 91(3), 1211-1227. https://doi.org/10.1121/1.402505
  10. Cecchi, A. and Sab, K. (2007), "A homogenized reissner-mindlin model for orthotropic periodic plates: Application to brickwork panels", J. Sol. Struct., 44(18), 6055-6079. https://doi.org/10.1016/j.ijsolstr.2007.02.009
  11. Chen, Z., Yu, S., Meng, L. and Lin, Y. (2002), "Effective properties of layered magneto-electro-elastic composites", Compos. Struct., 57(1), 177-182. https://doi.org/10.1016/S0263-8223(02)00081-8
  12. Ghosh, A. (1985), "Periodically layered composites for attenuation of dynamic loads", Nucl. Eng. Des., 84(1), 53-58. https://doi.org/10.1016/0029-5493(85)90311-5
  13. Hashin, Z. (1991a), "Thin interphase imperfect interface in elasticity with application to coated fiber composites", J. Mech. Phys. Sol., 36(6), 2509-2537.
  14. Jayatilake, I.N., Karunasena, W. and Lokuge, W. (2016), "Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations", Adv. Aircraft Spacecraft Sci., 3(1), 15-28. https://doi.org/10.12989/aas.2016.3.1.015
  15. Jones, J. and Whittier, J. (1967), "Waves at a flexible bonded interface", J. Appl. Mech., 28, 103-128.
  16. Kamali, M. and Pourmoghaddam, S. (2016), "Three-dimensional analysis of multi-layer composite plates of arbitrary shape and boundary conditions with shear slip interfaces", Mech. Adv. Mater. Struct., 23(5), 481-493. https://doi.org/10.1080/15376494.2014.984092
  17. Kim, B., Baltazar, A. and Kim, J. (2009), "Effective properties of multi-layered multi-functional composites", Adv. Compos. Mater., 18(2), 153-166. https://doi.org/10.1163/156855109X428817
  18. Kim, J. (2001), "Effective elastic constants of anisotropic multilayers", Mech. Res. Commun., 28(1), 97-101. https://doi.org/10.1016/S0093-6413(01)00149-5
  19. Kim, J.S., Oh, J. and Cho, M. (2011), "Efficient analysis of laminated composite and sandwich plates with interfacial imperfections", Compos. Part B: Eng., 42(5), 1066-1075. https://doi.org/10.1016/j.compositesb.2011.03.020
  20. Lan, M. and Wei, P. (2012), "Laminated piezoelectric phononic crystal with imperfect interfaces", J. Appl. Phys., 111(1), 013505. https://doi.org/10.1063/1.3672404
  21. Le-Quang, H. and He, Q. (2008), "Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces", Mech. Mater., 40(10), 865-884. https://doi.org/10.1016/j.mechmat.2008.04.003
  22. Lebee, A. and Sab, K. (2010), "A cosserat multiparticle model for periodically layered materials", Mech. Res. Commun., 37(3), 293-297. https://doi.org/10.1016/j.mechrescom.2010.01.007
  23. Lim, T. (2009), "Out-of-plane modulus of semi-auxetic laminates", Eur. J. Mech. A/Sol., 28(4), 752-756. https://doi.org/10.1016/j.euromechsol.2009.02.001
  24. Manevitch, L., Andrianov, I. and Oshmyan, V. (2002), Mechanics of Periodically Heterogeneous Structures, Springer, Berlin, Germany.
  25. Massabo, R. and Campi, F. (2015), "Assessment and correction of theories for multilayered plates with imperfect interfaces.", Meccan., 50(4), 1045-1071. https://doi.org/10.1007/s11012-014-9994-x
  26. Milton, G. (2002), The Theory of Composites, Cambridge University Press, U.K.
  27. Munoz, V., Perrin, M., Pastor, M.L., Welemane, H., Cantarel, A. and Karama, M. (2015), "Determination of the elastic properties in CFRP composites: Comparison of different approaches based on tensile tests and ultrasonic characterization", Adv. Aircraft Spacecraft Sci., 2(3), 249-261. https://doi.org/10.12989/aas.2015.2.3.249
  28. Norris, A. (1990), The Effective Moduli of Layered Media: A New Look at an Old Problem, Springer, New York, U.S.A.
  29. Santoyoa, E., Carrasqueroa, L., Rosadob, R., Sabinac, F., Ramosa, R. and Castilleroa, J. (2007), "Effective properties of periodic or non-periodic multilayered thermopiezoelectric composites", in "Rev. Cub. Fisica", 23, 20-24.
  30. Wang, Q. and Yu, W. (2014), "A variational asymptotic approach for thermoelastic analysis of composite beams", Adv. Aircraft Spacecraft Sci., 1(1), 93-123. https://doi.org/10.12989/aas.2014.1.1.093
  31. Wang, Y. (1999), "Nonlocal elastic analogy for wave propagation in periodically layered composites", Mech. Res. Commun., 26(6), 719-723. https://doi.org/10.1016/S0093-6413(99)00083-X
  32. Yu, W. (2005), "A variational-asymptotic cell method for periodically heterogeneous materials", in "Proceedings of the ASME International Mechanical Engineering Congress and RD&D Expo", Orlando, Florida, U.S.A., November.
  33. Yu, W. (2012), "An exact solution for micromechanical analysis of periodically layered composites", Mech. Res. Commun., 46, 71-74. https://doi.org/10.1016/j.mechrescom.2012.08.007
  34. Yu, W. (2016), "A unified theory for constitutive modeling of composites", J. Mech. Mater. Struct., 11(4), 379-411. https://doi.org/10.2140/jomms.2016.11.379