DOI QR코드

DOI QR Code

Dispersion and Shape Control on Nanoparticles of Gd2O3:Eu3+ Red Phosphor Prepared by Template Method

주형법으로 제조된 Gd2O3:Eu3+ 적색 형광체의 나노입자 분산 및 형상제어

  • Park, Jeong Min (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Ban, Se Min (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Jung, Kyeong-Youl (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Byung-Ki (CQV Co) ;
  • Kang, Kwang-Jung (CQV Co) ;
  • Kim, Dae-Sung (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology(KICET))
  • Received : 2017.05.18
  • Accepted : 2017.09.14
  • Published : 2017.10.27

Abstract

$Gd_2O_3:Eu^{3+}$ red phosphors were prepared by template method from crystalline cellulose impregnated by metal salt. The crystallite size and photoluminescence(PL) property of $Gd_2O_3:Eu^{3+}$ red phosphors were controlled by varying the calcination temperature and $Eu^{3+}$ mol ratio. The nano dispersion of $Gd_2O_3:Eu^{3+}$ was also conducted with a bead mill wet process. Dependent on the time of bead milling, $Gd_2O_3:Eu^{3+}$ nanosol of around 100 nm (median particle size : $D_{50}$) was produced. As the bead milling process proceeded, the luminescent efficiency decreased due to the low crystallinity of the $Gd_2O_3:Eu^{3+}$ nanoparticles. In spite of the low PL property of $Gd_2O_3:Eu^{3+}$ nanosol, it was observed that the photoluminescent property was recovered after re-calcination. In addition, in the dispersed nanosol treated at $85^{\circ}C$, a self assembly phenomenon between particles appeared, and the particles changed from spherical to rod-shaped. These results indicate that particle growth occurs due to mutual assembly of $Gd(OH)_3$ particles, which is the hydration of $Gd_2O_3$ particles, in aqueous solvent at $85^{\circ}C$.

Keywords

References

  1. K. Y. Jung and W. H. Kim, Korean Chem. Eng. Res., 53, 620 (2015). https://doi.org/10.9713/kcer.2015.53.5.620
  2. C. H. Lee, K. Y. Jung, J. G. Choi and Y. C. Kang, Mater. Sci. Eng. B, 116, 59 (2005). https://doi.org/10.1016/j.mseb.2004.09.016
  3. B. Antic, J. Rogan, A. Kremenovic, A. S. Nikolic, M. Vucinic-Vasic, D. K. Bozanic, C. F. Goya and P. H. Colomban, Nanotechnology, 21, 1 (2010).
  4. C. C. Lin, K. M. Lin and Y. Y. Li, J. Lumin., 126, 795 (2007). https://doi.org/10.1016/j.jlumin.2006.11.014
  5. H. M. Yang, J. X. Shi and M. L. Gong, J. Solid State Chem., 178, 917 (2005). https://doi.org/10.1016/j.jssc.2004.12.022
  6. C. C. Kang, R. S. Liu, J. C. Chang and B. J. Lee, Chem. Mater., 15, 3966 (2003). https://doi.org/10.1021/cm0344212
  7. D. Y. Kong, M. Yu, C. K. Lin, X. M. Liu, J. Lin and J. Fang, J. Electrochem. Soc., 152, H146 (2005). https://doi.org/10.1149/1.1990612
  8. M. Yu, J. Lin and J. Fang, Chem. Mater., 17, 1783 (2005). https://doi.org/10.1021/cm0479537
  9. H. J. Lee, S. M. Ban, K. Y. Jung, B. K. Choi, K. J. Kang and D. S. Kim, Korean J. Mater. Res., 27, 100 (2017). https://doi.org/10.3740/MRSK.2017.27.2.100
  10. M. G. Park, H. Kim, H. M. Lim, J. Choi and D. S. Kim, Korean J. Mater. Res., 26, 136 (2016). https://doi.org/10.3740/MRSK.2016.26.3.136
  11. M. J. Park, J. W. Ahn and H. Kim, Korean J. Ceram. Soc., 38, 343 (2001).
  12. H. J. Song, J. H. Noh, H. S. Roh, J. S. Kim, D. W. Kim and K. S. Hong, Curr. Appl. Phys., 13, S69 (2013). https://doi.org/10.1016/j.cap.2013.01.033
  13. X. T. Wei, Y. H. Chen, X. R. Cheng, M. Yin and W. Xu, Appl. Phys. B, 99, 763 (2010).
  14. H. S. Roh, E. J. Kim, H. S. Kang, Y. C. Kang, H. D. Park and S. B. Park, Jpn. J. Appl. Phys., 42, 2741 (2003). https://doi.org/10.1143/JJAP.42.2741
  15. C. C. Lin, K. M. Lin and Y. Y. Li, Nanotechnology, 1, 808 (2006).
  16. A. P. de Moura, L. H. Oliveira, I. C. Nogueira, P. F. S. Pereira, M. S. Li, E. Longo, J. A. Varela, I. and L. V. Rosa, Adv. Chem. Eng. Sci., 4, 374 (2014). https://doi.org/10.4236/aces.2014.43041
  17. M. A. Flores-Gonzalez, C. Louis, R. Bazzi, G. Ledoux, K. Lebbou, S. Roux, P. Perriat and O. Tillement, Appl. Phys. A, 81, 1385 (2005). https://doi.org/10.1007/s00339-005-3215-3
  18. R. K. Tamrakar, D. P. Bisen and N. Brahme, Res. Chem. Intermed., 40, 1771 (2014). https://doi.org/10.1007/s11164-013-1080-9
  19. Y. C. Kang, S. B. Park, I. W. Lenggoro and K. Okuyama, J. Phys. Chem. Solids, 60, 379 (1999). https://doi.org/10.1016/S0022-3697(98)00266-2