DOI QR코드

DOI QR Code

A new conjugate gradient algorithm for solving dynamic load identification

  • Wang, Lin J. (Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance, College of Mechanical and Power Engineering, China Three Gorges University) ;
  • Deng, Qi C. (Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance, College of Mechanical and Power Engineering, China Three Gorges University) ;
  • Xie, You X. (College of Science Technology, China Three Gorges University)
  • Received : 2017.01.06
  • Accepted : 2017.09.18
  • Published : 2017.10.25

Abstract

In this paper, we propose a new conjugate gradient method which possesses the global convergence and apply it to solve inverse problems of the dynamic loads identification. Moreover, we strictly prove the stability and convergence of the proposed method. Two engineering numerical examples are presented to demonstrate the effectiveness and speediness of the present method which is superior to the Landweber iteration method. The results of numerical simulations indicate that the proposed method is stable and effective in solving the multi-source dynamic loads identification problems of practical engineering.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Hubei Chenguang Talented Youth Development Foundation

References

  1. Amiri, A.K. and Bucher, C. (2015), "Derivation of a new parametric impulse response matrix utilized for nodal wind load identification by response measurement", J. Sound Vib., 344, 101-113. https://doi.org/10.1016/j.jsv.2014.12.027
  2. Bartlett, F.D. and Flannelly, W.D. (1979), "Modal verification of force determination for measuring vibration Loads", J. Am. Helicopter Soc., 19(6), 10-18.
  3. Giansante, N., Jones, R. and Galapodas, N.J. (1982), "Determination of in-flight helicopter loads", J. Am. Helicopter Soc., 27(3), 58-64. https://doi.org/10.4050/JAHS.27.58
  4. Gunawan, F.E. and Homma, H. (2008a), "A solution of the illposed impact-force inverse problems by the weighted least squares method", J. Mech. Phys. Solid., 2(2), 188-198.
  5. Gunawan, F.E. and Homma, H. (2008b), "Impact-force estimation by quadratic spline approximation", J. Mech. Phys. Solid., 2(8), 1092-1103.
  6. Gunawan, F.E., Homma, H. and Kanto, Y. (2006), "Two-step bsplines regularization method for solving an ill-posed problem of impact-force reconstruction", J. Sound Vib., 297(1), 200-214. https://doi.org/10.1016/j.jsv.2006.03.036
  7. Liu, G.R., Ma, W.B. and Han, X. (2002), "An inverse procedure for identification of loads on composite laminates", Compos. Part B: Eng., 33(6), 425-432. https://doi.org/10.1016/S1359-8368(02)00027-6
  8. Liu, J., Han, X., Jiang, C., Ning, H.M. and Bai, Y.C. (2011), "Dynamic load identification for uncertain structures based on interval analysis and regulation method", Int. J. Comput. Meth. 8(4), 667-683. https://doi.org/10.1142/S0219876211002757
  9. Liu, J., Sun, X., Han, X., Jiang, C. and Yu, D. (2014). "A novel computational inverse technique for load identification using the shape function method of moving least square fitting", Comput. Struct., 144, 127-137. https://doi.org/10.1016/j.compstruc.2014.08.002
  10. Liu, J., Sun, X.S. and Han, X. (2015a), "Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method", J. Mech. Syst. Signal Pr., 56-57, 35-54. https://doi.org/10.1016/j.ymssp.2014.10.008
  11. Lu, Z.R. and Law, S.S. (2007), "Identification of system parameters and input force from output only", Mech. Syst. Signal Pr., 21(5), 2099-2111. https://doi.org/10.1016/j.ymssp.2006.11.004
  12. Neubauer, A. (2000), "On Landweber iteration for nonlinear il1-posed problems in Hilbert scales", Numer. Math., 85(2), 309-328. https://doi.org/10.1007/s002110050487
  13. Qin, Y.T., Zhang, F. and Chen, G.P. (2007), "A frequency method for two dimensional distributed load identification", J. Vib. Eng., 20(5), 512-518.
  14. Ronasi, H., Johansson, H. and Larsson, F. (2011), "A numerical framework for load identification and regularization with application to rolling disc problem", Comput. Struct., 89(1), 38-47. https://doi.org/10.1016/j.compstruc.2010.07.009
  15. Simonian, S.S. (1981a), "Inverse problems in structural dynamics-I. Theory", Int. J. Numer. Meth.Eng. A, 17(3), 357-365. https://doi.org/10.1002/nme.1620170306
  16. Simonian, S.S. (1981b), "Inverse problems in structural dynamics-II. Applications", Int. J. Numer. Meth.Eng., B, 17(3), 367-386. https://doi.org/10.1002/nme.1620170307
  17. Turco, E. (1998), "Load distribution modelling for pin-jointed trusses by an inverse approach", Comput. Meth. Appl. M., 165(1-4), 291-333. https://doi.org/10.1016/S0045-7825(98)80013-3
  18. Turco, E. (2005a), "Is the statistical approach suitable for identifying actions on structures?", Comput. Struct., 83(25), 2112-2120. https://doi.org/10.1016/j.compstruc.2005.03.006
  19. Turco, E. (2005b), "A strategy to identify exciting forces acting on structures", Int. J. Numer. Meth. Eng., 64(11), 1483-1508. https://doi.org/10.1002/nme.1418
  20. Wang, L.J., Han, X. and Xie, Y.X. (2012), "A new iterative regularization method for solving the dynamic load identification problem", Comput. Mater. Continua, 31(2), 113-126.
  21. Wang, L.J., Han, X., Liu, J. and Chen, J.J. (2011b), "An improved iteration regularization method and application to reconstruction of dynamic loads on a plate", J. Comput. Appl. Math., 235(14, 15), 4083-4094. https://doi.org/10.1016/j.cam.2011.02.034
  22. Wang, L.J., Han, X., Liu, J., He, X.Q. and Huang, F. (2011a), "A new regularization method and application to dynamic load identification problems", Inverse Probl. Sci. Eng., 19(6), 765-776. https://doi.org/10.1080/17415977.2010.531468
  23. Wang, L.J., Xie, Y.X. (2012), "A new conjugate gradient method for the solution of linear Ill-posed problem", J. Appl. Computat. Math., 1, 108, doi: 10.4172/2168-9679.1000108.
  24. Wei, Z., Yao, S. and Liu, L. (2006), "The convergence properties of some new conjugate gradient methods", Appl. Math. Comput., 183(2), 1341-1350. https://doi.org/10.1016/j.amc.2006.05.150
  25. Xu, B., He, J. (2015), "Substructural parameters and dynamic loading identification with limited observations", Smart Struct. Syst., 15(1), 169-189. https://doi.org/10.12989/sss.2015.15.1.169
  26. Xu, F., Chen, H.H. and Bao, M. (2002), "Force identification model improved based on modal filter", J. Acta Aeronautica et Astronautica Sinica, 23, 51-54.
  27. Yu, L., Chan, T.H. and Zhu, J.H. (2008a), "A MOM-based algorithm for moving force identification: Part I-Theory and numerical simulation", Struct. Eng. Mech., 29(2), 135-154. https://doi.org/10.12989/sem.2008.29.2.135
  28. Yu, L., Chan, T.H. and Zhu, J.H. (2008b), "A MOM-based algorithm for moving force identification: Part II-Experiment and comparative studies", J. Struct. Eng., 29(2), 155-169.
  29. Yuan, G., Lu, S. and Wei, Z. (2010), "A line search algorithm for unconstrained optimization", J. Softw. Eng. Appl., 3(5), 503-509. https://doi.org/10.4236/jsea.2010.35057
  30. Zhang, F. and Zhu, D.A. (1997), "The dynamic load identification research based on neural network model", J. Vib. Eng., 10(2), 156-162.
  31. Zhang, F., Qin, Y.T. and Deng J.H. (2006), "Research of identification technology of dynamic load distributed on the structure", J. Vib. Eng., 19(1), 81-85.
  32. Zhu, T., Xiao, S.N. and Yang, G.W. (2014), "Force identification in time domain based on dynamic programming", J. Appl. Math. Comput., 235(25), 226-234. https://doi.org/10.1016/j.amc.2014.03.008
  33. Zoutendijk, G. (1970), Nonlinear Programming Computational Methods, Ed. J. Abadie, Integer and Nonlinear Programming, North Holland, Amsterdam.