References
- ACI Committee 211 (2008), Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious Materials ACI 211.4R-08, American Concrete Institute, Farmington Hills (MI).
- Afroughsabet, V. and Ozbakkaloglu, T. (2015), "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater., 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
- Araghi, H.J., Nikbin, I.M., Reskati, S.R., Rahmani, E. and Allahyari, H. (2015), "An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack", Constr. Build. Mater., 77, 461-471. https://doi.org/10.1016/j.conbuildmat.2014.12.037
- Aslani, F. and Natoori, M. (2013), "Stress-strain relationships for steel fibre reinforced self-compacting concrete", Struct. Eng. Mech., 46(2), 295-322. https://doi.org/10.12989/sem.2013.46.2.295
- ASTM C143/C143M (2015), "Standard Test Method for Slump of Hydraulic-Cement Concrete", American Society for Testing and Materials International, United States.
- ASTM C597 (2016), "Standard test method for pulse velocity through concrete", United States: American Society for Testing and Materials International.
- Bogas, J.A., Gomes, M.G. and Gomes, A. (2013), "Compressive strength evaluation of structural lightweight concrete by nondestructive ultrasonic pulse velocity method", Ultrasonics, 53(5), 962-972. https://doi.org/10.1016/j.ultras.2012.12.012
- BS 1881-116 (1983), Testing Concretes, Method for determination of compressive strength of concrete cubes.
- Chang, Z.T., Song, X.J., Munn, R. and Marosszeky, M. (2005), "Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack", Cement Concrete Res., 35(8), 1486-1494. https://doi.org/10.1016/j.cemconres.2005.03.006
- Derringer, G. and Suich, R. (1980), "Simultaneous optimization of several response variables", J. Qual. Technol., 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968
- Design-Expert (R) 8 software (2012), Stat-Ease, Inc., Minneapolis, MN, USA 2012.
- Ehrich, S., Helard, L., Letourneux, R., Willocq, J. and Bock, E. (1999), "Biogenic and chemical sulfuric acid corrosion of mortars", J. Mater. Civil Eng., 11(4), 340-344. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(340)
- Fallah, S. and Nematzadeh, M. (2017), "Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume", Constr. Build. Mater., 132, 170-187. https://doi.org/10.1016/j.conbuildmat.2016.11.100
- Fattuhi, N.I. and Hughes, B.P. (1988), "Ordinary Portland cement mixes with selected admixtures subjected to sulfuric acid attack", Mater. J., 85(6), 512-518.
- Hasan-Nattaj, F. and Nematzadeh, M. (2017), "The effect of fortaferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica", Constr. Build. Mater., 137, 557-572. https://doi.org/10.1016/j.conbuildmat.2017.01.078
- Hernandez, M.G., Izquierdo, M.A.G., Ibanez, A., Anaya, J.J. and Ullate, L.G. (2000), "Porosity estimation of concrete by ultrasonic NDE", Ultrasonics, 38(1), 531-533. https://doi.org/10.1016/S0041-624X(99)00095-5
- Hobbs, D.W. and Taylor, M.G. (2000), "Nature of the thaumasite sulfate attack mechanism in field concrete", Cement Concrete Res., 30(4), 529-533. https://doi.org/10.1016/S0008-8846(99)00255-0
- Hsu, L.S. and Hsu, C.T. (1994), "Stress-strain behavior of steelfiber high-strength concrete under compression", Struct. J., 91(4), 448-457.
- Hwang, J.P., Jung, M.S., Kim, M. and Ann, K.Y. (2015), "Corrosion risk of steel fibre in concrete", Constr. Build. Mater., 101, 239-245. https://doi.org/10.1016/j.conbuildmat.2015.10.072
- Kim, B., Boyd, A.J., Kim, H.S. and Lee, S.H. (2015), "Steel and synthetic types of fiber reinforced concrete exposed to chemical erosion", Constr. Build. Mater., 93, 720-728. https://doi.org/10.1016/j.conbuildmat.2015.06.023
- Koksal, F., Sahin, Y., Gencel, O. and Yigit, I. (2013), "Fracture energy-based optimisation of steel fibre reinforced concretes", Eng.g Fract. Mech., 107, 29-37. https://doi.org/10.1016/j.engfracmech.2013.04.018
- Lee, S.T., Hooton, R.D., Jung, H.S., Park, D.H. and Choi, C.S. (2008), "Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature", Cement Concrete Res., 38(1), 68-76. https://doi.org/10.1016/j.cemconres.2007.08.003
- Mangat, P.S. and Gurusamy, K. (1988), "Corrosion resistance of steel fibres in concrete under marine exposure", Cement Concrete Res., 8(1), 44-54.
- Mehta, P.K. (1985), "Studies on chemical resistance of low water/cement ratio concretes", Cement Concrete Res., 15(6), 969-978. https://doi.org/10.1016/0008-8846(85)90087-0
- Miao, C., Mu, R., Tian, Q. and Sun, W. (2002), "Effect of sulfate solution on the frost resistance of concrete with and without steel fiber reinforcement", Cement Concrete Res., 32(1), 31-34. https://doi.org/10.1016/S0008-8846(01)00624-X
- Monteny, J., De Belie, N., Vincke, E., Verstraete, W. and Taerwe, L. (2001), "Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete", Cement Concrete Res., 31(9), 1359-1365. https://doi.org/10.1016/S0008-8846(01)00565-8
- Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D. and Verstraete, W. (2000), "Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete", Cement Concrete Res., 30(4), 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2
- Naffa, S.O., Goueygou, M., Piwakowski, B. and Buyle-Bodin, F. (2002), "Detection of chemical damage in concrete using ultrasound", Ultrasonics, 40(1), 247-251. https://doi.org/10.1016/S0041-624X(02)00146-4
- Nematzadeh M. and Hasan-Nattaj, F. (2017), "Compressive stressstrain model for high-strength concrete reinforced with fortaferro and steel fibers", J. Mater. Civil Eng., 29(10), 04017152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001990
- Nwokoye, D.N. and Eng, C. (1974), "Assessment of the elastic moduli of cement paste and mortar phases in concrete from pulse velocity tests", Cement Concrete Res., 4(4), 641-655. https://doi.org/10.1016/0008-8846(74)90012-X
- Rahimi, S., Nikbin, I.M., Allahyari, H. and Habibi, S. (2016), "Sustainable approach for recycling waste tire rubber and polyethylene terephthalate (PET) to produce green concrete with resistance against sulfuric acid attack", J. Clean. Product., 126, 166-177. https://doi.org/10.1016/j.jclepro.2016.03.074
- Santhanam, M., Cohen, M.D. and Olek, J. (2002), "Mechanism of sulfate attack: A fresh look: Part 1: Summary of experimental results", Cement Concrete Res., 32(6), 915-921. https://doi.org/10.1016/S0008-8846(02)00724-X
- Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J. and Scrivener, K. (2009), "Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements", Cement Concrete Res., 39(12), 1111-1121. https://doi.org/10.1016/j.cemconres.2009.08.005
- Shannag, M.J. (2000), "High strength concrete containing natural pozzolan and silica fume", Cement Concrete Compos., 22(6), 399-406. https://doi.org/10.1016/S0958-9465(00)00037-8
- Solis-Carcano, R. and Moreno, E.I. (2008), "Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity", Constr. Build. Mater., 22(6), 1225-1231. https://doi.org/10.1016/j.conbuildmat.2007.01.014
- Suleiman, A.R., Soliman, A.M. and Nehdi, M.L. (2014), "Effect of surface treatment on durability of concrete exposed to physical sulfate attack", Constr. Build. Mater., 73, 674-681. https://doi.org/10.1016/j.conbuildmat.2014.10.006
- Tamimi, A.K. (1997), "High-performance concrete mix for an optimum protection in acidic conditions", Mater. Struct., 30(3), 188-191. https://doi.org/10.1007/BF02486392
- Torii, K. and Kawamura, M. (1994), "Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack", Cement Concrete Res., 24(2), 361-370 https://doi.org/10.1016/0008-8846(94)90063-9
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001
- Zarrin, O. and Khoshnoud, H.R. (2016), "Experimental investigation on self-compacting concrete reinforced with steel fibers", Struct. Eng. Mech., 59(1), 133-151. https://doi.org/10.12989/sem.2016.59.1.133
Cited by
- A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures vol.278, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.122340