DOI QR코드

DOI QR Code

Stress-strain behavior of geopolymer under uniaxial compression

  • Received : 2016.10.11
  • Accepted : 2017.05.10
  • Published : 2017.10.25

Abstract

The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

Keywords

References

  1. Allahverdi, A., Mehrpour, K. and Kani, E.N. (2008), "Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer cement", Ceram-Silikat., 52(1), 16-23.
  2. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N. and Ramezanianpour, A.A. (2011), "Effect of adding mineral additives to alkali-activated natural pozzolan paste", Constr. Build. Mater., 25(6), 2906-2910. https://doi.org/10.1016/j.conbuildmat.2010.12.031
  3. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N. and Ramezanianpour, A.A. (2011), "Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans", Constr. Build. Mater., 25(10), 4065-4071. https://doi.org/10.1016/j.conbuildmat.2011.04.044
  4. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N. and Ramezanianpour, A.A. (2011), "Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans", Cement Concrete Compos., 33(2), 251-260. https://doi.org/10.1016/j.cemconcomp.2010.10.021
  5. Catanescu, I., Georgescu, M. and Melinescu, A. (2012), "Synthesis and characterization of geopolymer binders from Fly ash", Sci. Bullet. Ser. B: Chem. Mater. Sci., 74(1).
  6. Davidovits, J. (1989), "Fast-curing cement", Chem. Eng. News, 67(27), 4-5. https://doi.org/10.1021/cen-v067n027.p004
  7. Davidovits, J. (1991), "Geopolymers-inorganic polymeric new materials", J. Therm. Anal., 37(8), 1633-1656. https://doi.org/10.1007/BF01912193
  8. Davidovits, J. (1989), "Geopolymers and geopolymeric materials", J. Therm. Anal., 35(2), 429-441. https://doi.org/10.1007/BF01904446
  9. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and Van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Coll. Surf. A, 269(1-3), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060
  10. Fletcher, R.A., MacKenzie, K.J.D., Nicholson, C.L. and Shimada, S. (2005), "The composition range of aluminosilicate geopolymers", J. Eur. Ceram. Soc., 25(9), 1471-1477. https://doi.org/10.1016/j.jeurceramsoc.2004.06.001
  11. Gimeno, D., Davidovits, J., Marini, C., Rocher, P., Tocco, S., Cara, S., Diaz, N., Segura, C. and Sistu, G. (2003), "Development of silicate-based cement from glassy alkaline volcanic rocks: Interpretation of preliminary data related to chemical-mineralogical composition of geologic raw materials", Bol. Soc. Esp. Ceram. V, 42(2), 69-78. https://doi.org/10.3989/cyv.2003.v42.i2.643
  12. He, J. (2012), Synthesis and Characterization of Geopolymers for Infrastructural Applications, Nottingham University, U.K.
  13. He, J.A., Zhang, G.P., Hou, S.A. and Cai, C.S. (2011), "Geopolymer-based smart adhesives for infrastructure health monitoring: Concept and feasibility", J. Mater. Civil Eng., 23(2), 100-109. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000140
  14. Kamseu, E., Cannio, M., Obonyo, E.A., Tobias, F., Bignozzi, M.C., Sglavo, V.M. and Leonelli, C. (2014), "Metakaolin-based inorganic polymer composite: Effects of fine aggregate composition and structure on porosity evolution, microstructure and mechanical properties", Cement Concrete Compos., 53, 258-269. https://doi.org/10.1016/j.cemconcomp.2014.07.008
  15. Komnitsas, K.A. (2011), "Potential of geopolymer technology towards green buildings and sustainable cities", Proc. Eng., 21, 1023-1032. https://doi.org/10.1016/j.proeng.2011.11.2108
  16. Lawson, J.L. (2008), On the Determination of the Elastic Properties of Geopolymeric Materials Using Non-Destructive Ultrasonic Techniques, Master of Science Rochester, Rochester Institute of Technology, New York, U.S.A.
  17. Lim, J.C. and Ozbakkaloglu, T. (2014), "Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression", Constr. Build. Mater., 71, 492-509. https://doi.org/10.1016/j.conbuildmat.2014.08.050
  18. Ozbakkaloglu, T. and Xie, T.Y. (2016), "Geopolymer concrete-filled FRP tubes: Behavior of circular and square columns under axial compression", Compos. Part B-Eng., 96, 215-230. https://doi.org/10.1016/j.compositesb.2016.04.013
  19. Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., Nykvist, B., De Wit, C.A., Hughes, T., Van Der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P. and Foley, J.A. (2009), "A safe operating space for humanity", Nat., 461(7263), 472-475. https://doi.org/10.1038/461472a
  20. Scrivener, K.L. and Kirkpatrick, R.J. (2008), "Innovation in use and research on cementitious material", Cement Concrete Res., 38(2), 128-136. https://doi.org/10.1016/j.cemconres.2007.09.025
  21. Torab-Mostaedi, M., Ghassabzadeh, H., Ghannadi-Maragheh, M., Ahmadi, S. and Taheri, H. (2010), "Removal of cadmium and nickel from aqueous solution using expanded perlite", Brazil. J. Chem. Eng., 27(2), 299-308. https://doi.org/10.1590/S0104-66322010000200008
  22. Van Deventer, J.S.J., Provis, J.L. and Duxson, P. (2012), "Technical and commercial progress in the adoption of geopolymer cement", Miner. Eng., 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009
  23. Xie, T.Y. and Ozbakkaloglu, T. (2015), "Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature", Ceram. Int., 41(4), 5945-5958. https://doi.org/10.1016/j.ceramint.2015.01.031
  24. Xie, T.Y. and Ozbakkaloglu, T. (2015), "Influence of coal ash properties on compressive behaviour of FA- and BA-based GPC", Mag. Concrete Res., 67(24), 1301-1314. https://doi.org/10.1680/macr.14.00429
  25. Yadollahi, M.M., Demirboga, R. and Polat, R. (2014), "Effect of heat treatment temperature on ground pumice activation in geopolymer composites", Sci. Eng. Compos. Mater., 21(3), 377-382.
  26. Yadollahi, M.M., Benli, A. and Demirboga, R. (2015), "Effects of elevated temperature on pumice based geopolymer composites", Plast Rub. Compos., 44(6), 226-237. https://doi.org/10.1179/1743289815Y.0000000020
  27. Yadollahi, M.M., Benli, A. and Demirboga, R. (2015), "The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites", Constr. Build. Mater., 94, 767-774. https://doi.org/10.1016/j.conbuildmat.2015.07.052