DOI QR코드

DOI QR Code

Protective effects of alginate-free residue of sea tangle against hyperlipidemic and oxidant activities in rats

  • Yim, Mi-Jin (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Choi, Grace (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Lee, Jeong Min (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Cho, Soon-Yeong (Department of Food Processing and Distribution, Gangneung-Wonju National University) ;
  • Lee, Dae-Sung (Department of Applied Research, National Marine Biodiversity Institute of Korea)
  • Received : 2017.07.04
  • Accepted : 2017.08.26
  • Published : 2017.09.30

Abstract

The antihyperlipidemic and antioxidant activities of dietary supplementation of sea tangle from Goseong and the alginate-free residue of sea tangle were investigated in Sprague Dawley rats treated with a high-fat diet, streptozotocin, poloxamer 407, and bromobenzene. The alginate-free residue of Goseong sea tangle induced a significant reduction in triglycerides and total cholesterol levels, as well as a significant increase in high-density lipoprotein cholesterol levels. Alginate-free Goseong sea tangle residue reduced the activities of the phase I enzymes aminopyrine N-demethylase and aniline hydroxylase, which had been increased by intraperitoneal injection of bromobenzene. Pretreatment with Goseong sea tangle residue prevented a bromobenzene-induced decrease in epoxide hydrolase activity. Bromobenzene reduced hepatic glutathione content and increased hepatic lipid peroxide levels. Pretreatment with alginate-free Goseong sea tangle residue prevented lipid peroxidation induced by bromobenzene, but pretreatment with Goseong sea tangle did not. These results suggest that Goseong sea tangle residue exerted antihyperlipidemic and antioxidant activities that were higher than those induced by alginate-containing sea tangle. Therefore, the alginate-free residue may contain physiologically unknown active components, other than alginic acid, which may potentially be used to prevent hyperlipidemic atherosclerosis.

Keywords

References

  1. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R, Cholesterol Treatment Trialists' (CTT) Collaborators. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670-81. https://doi.org/10.1016/S0140-6736(10)61350-5
  2. Bidlack WR, Lowery GL. Multiple drug metabolism: p-nitroanisole reversal of acetone enhanced aniline hydroxylation. Biochem Pharmacol. 1982;31:311-7. https://doi.org/10.1016/0006-2952(82)90176-9
  3. Boyne AF, Ellma GL. A methodology for analysis of tissue sulfhydryl components. Anal Biochem. 1972;46:639-53. https://doi.org/10.1016/0003-2697(72)90335-1
  4. Buben JA, Narasimhan N, Hanzlik RP. Effects of chemical and enzymic probes on covalent binding of bromobenzene and derivatives. Evidence of quinones as reactive metabolites. Xenobiotica. 1988;18:501-10. https://doi.org/10.3109/00498258809041687
  5. Cohen SD, Pumford NR, Khairallah EA, Boekelheide K, Pohl LR, Amouzadeh HR, Hinson JA. Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol. 1997;143:1-12. https://doi.org/10.1006/taap.1996.8074
  6. Derosa G, Salvadeo S, Cicero AF. Prospects for the development of novel antihyperlipidemic drugs. Curr Opin Investig Drugs. 2006;7:826-33.
  7. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497-509.
  8. Gopi S, Setty OH. Protective effect of Phyllanthus fraternus against bromobenzene induced mitochondrial dysfunction in rat liver mitochondria. Food Chem Toxicol. 2010;48:2170-5. https://doi.org/10.1016/j.fct.2010.05.024
  9. Han J, Kang S, Choue R, Kim H, Leem K, Chung S, Kim C, Chung J. Free radical scavenging effect of Diospyros kaki, Laminaria japonica and Undaria pinnatifida. Fitoterapia. 2002;73:710-2. https://doi.org/10.1016/S0367-326X(02)00236-8
  10. Harchaoui KE, Visser ME, Kastelein JJ, Stroes ES, Dallinga-Thie GM. Triglycerides and cardiovascular risk. Curr Cardiol Rev. 2009;5:216-22. https://doi.org/10.2174/157340309788970315
  11. Hasegawa LS, Hammock BD. Spectrophotometric assay for mammalian cytosolic epoxide hydrolase using trans-stilbene oxide as the substrate. Biochem Pharmacol. 1982;31:1979-84. https://doi.org/10.1016/0006-2952(82)90408-7
  12. Jin DQ, Li G, Kim JS, Yong CS, Kim JA, Huh K. Preventive effects of Laminaria japonica aqueous extract on the oxidative stress and xanthine oxidase activity in streptozotocin-induced diabetic rat liver. Biol Pharm Bull. 2004;27:1037-40. https://doi.org/10.1248/bpb.27.1037
  13. Lee KS, Choi YS, Seo JS. Sea tangle supplementation lowers blood glucose and supports antioxidant systems in streptozotocin-induced diabetic rats. J Med Food. 2004;7:130-5. https://doi.org/10.1089/1096620041223996
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-75.
  15. McKenney JM. Pharmacotherapy of dyslipidemia. Cardiovasc Drugs Ther. 2001;15:413-22. https://doi.org/10.1023/A:1013341606476
  16. Murata M, Ishihara K, Saito H. Hepatic fatty acid oxidation enzyme activities are stimulated in rats fed the brown seaweed, Undaria pinnatifida (Wakame). J Nutr. 1999;129:146-51. https://doi.org/10.1093/jn/129.1.146
  17. Narasimhan N, Weller PE, Buben JA, Wiley RA, Hanzlik RP. Microsomal metabolism and covalent binding of [$^{13}C/^{14}C$]-bromobenzene. Evidence for quinones as reactive metabolites. Xenobiotica. 1988;18:491-9. https://doi.org/10.3109/00498258809041686
  18. Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. J Biol Chem. 1953;55:412-6.
  19. Ohkawa H, Ohishi N, Yaki K. Assay for lipid peroxides in animal tissues by thiobabituric acid reaction. Anal Biochem. 1979;95:351-8. https://doi.org/10.1016/0003-2697(79)90738-3
  20. Okai Y, Higashi-okai K, Nakamura S. Identification of heterogenous antimutagenic activities in the extract of edible brown seaweeds, Laminaria japonica (Makonbu) and Undaria pinnatifida (Wakame) by the umu gene expression system in Salmonella typhimurium (TA1535/pSK1002). Mutat Res. 1993;30:63-70.
  21. Park JS, Han WD, Park JR, Choi SH, Choi JW. Change in hepatic drug metabolizing enzymes and lipid peroxdation by methanol extract and major compound of Orostachys japonicas. J Ethnopharmacol. 2005;102:313-8. https://doi.org/10.1016/j.jep.2005.06.023
  22. Park PJ, Kim EK, Lee SJ, Park SY, Kang DS, Jung BM, Kim KS, Je HY, Ahn CB. Protective effects against $H_2O_2$-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica). J Med Chem. 2009;12:159-66.
  23. Pilz S, Scharnagl H, Tiran B, Seelhorst U, Wellnitz B, Boehm BO, Schaefer JR, Marz W. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin Endocrinol Metab. 2006; 91:2542-7. https://doi.org/10.1210/jc.2006-0195
  24. Pumford NR, Halmes NC. Protein targets of xenobiotic reactive intermediates. Annu Rev Pharmacol Toxicol. 1997;4:349-59.
  25. Raja KFH, Ahamed N, Kumar V, Mukherjee K, Bandyopadyay A, Mukherjee PK. Antioxidant effect of Cytisus scoparius against carbon tetrachloride treated liver injury in rat. J Ethnopharmacol. 2007;109:41-7. https://doi.org/10.1016/j.jep.2006.06.012
  26. Rogers JF, Nafziger AN, Bertino JS Jr. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med. 2002;113:746-50. https://doi.org/10.1016/S0002-9343(02)01363-3
  27. Slaughter DE, Hanzlik RP. Identification of epoxide- and quinone-derived bromobenzene adducts to protein sulfur nucleophiles. Chem Res Toxicol. 1991;4:349-59. https://doi.org/10.1021/tx00021a015
  28. Sliskovic DR, White AD. Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents. Trends Pharmacol Sci. 1991;12:194-9. https://doi.org/10.1016/0165-6147(91)90546-5
  29. Talbert R. Hyperlipidemia, DePiro textbook of therapeutics. Connecticut: Appleton and Lange; 1997. p. 357-86.
  30. Torsdottir I, Alpsen M, Holm G, Sandberg AS, Tolli J. A small dose of soluble alginate-fiber affects postprandial glycemia and gastric emptying in humans with diabetes. J Nutr. 1991;121:795-9. https://doi.org/10.1093/jn/121.6.795
  31. Wald NJ, Law MR. Serum cholesterol and ischemic heart disease. Atherosclerosis. 1995;118(Suppl):S1-5. https://doi.org/10.1016/0021-9150(95)90067-5
  32. Wang Y, Tang XX, Yang Z, Yu ZM. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaephyceae). J Environ Sci (China). 2006;18:543-51.
  33. Wu J, Karlsson K, Danielsson A. Effects of vitamins E, C, and catalase on bromobenzene-and hydrogen peroxide-induced intracellular oxidation and DNA single strand breakage in Hep G2 cells. J Hepatol. 1994;26:669-77.
  34. Zhang X, Wu C, Wu H, Sheng L, Su Y, Zhang X, Luan H, Sun G, Sun X, Tian Y, Ji Y, Guo P, Xu X. Anti-hyperlipidemic effects and potential mechanisms of action of the caffeoylquinic acid-rich Pandanus tectorius fruit extract in hamsters fed a high fat-diet. PLoS One. 2013;8:e61922. https://doi.org/10.1371/journal.pone.0061922

Cited by

  1. The protective mechanisms of macroalgae Laminaria japonica consumption against lipid metabolism disorders in high-fat diet-induced hyperlipidemic rats vol.11, pp.4, 2017, https://doi.org/10.1039/d0fo00065e